Block Ciphers

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

January 3, 2024

Disclaimers

All the pictures used in this presentation are taken from freely available websites.

2

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

3

Any mention of commercial products or reference to commercial organizations is for information only; it does not imply recommendation or endorsement nor does it imply that the products mentioned are necessarily the best available for the purpose.

Outline

(1) Introduction
(2) Feistel Network

- DES
(3) SPN
- AES

4 Modes of Operation

Outline

(1) Introduction

(2) Feistel Network

(3) SPN

- AES

4 Modes of Operation

What is a Block Cipher?

What is a Block Cipher?

Block Cipher

A block cipher is a function

$$
f_{\mathcal{K}}: \mathscr{P}_{A}^{n} \rightarrow C_{A}^{m},
$$

such that for each key $K \in \mathcal{K}$, an 'invertible mapping' exists for f_{K}.

What is a Block Cipher?

Block Cipher

A block cipher is a function

$$
f_{\mathcal{K}}: \mathscr{P}_{A}^{n} \rightarrow C_{A}^{m},
$$

such that for each key $K \in \mathcal{K}$, an 'invertible mapping' exists for f_{K}.

Definition

A mapping $f_{\{0,1\}^{k}}:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is called a block cipher with block size n bits and key size k bits, if the mapping $f_{K}(\cdot)$ is a bijection for each $K \in\{0,1\}^{k}$, i.e., if $f_{K}^{-1}(\cdot)$ exists with $f_{K}^{-1}\left(f_{K}(x)\right)=x$ for each $K \in\{0,1\}^{k} \& x \in\{0,1\}^{n}$.

Simple Substitution

Example

A	B	C	D	E	F	G	H	\ldots	Z
U	I	K	T	R	F	Z	W	\ldots	G

Simple Substitution

Example

A	B	C	D	E	F	G	H	\ldots	Z
U	I	K	T	R	F	Z	W	\ldots	G

DEAD

1
 TRUT

Simple Substitution

Example

A	B	C	D	E	F	G	H	\ldots	Z
U	I	K	T	R	F	Z	W	\ldots	G

DEAD

TRUT

Permutation on Block of Characters

Example

AAAA	AAAB	AAAC	\cdots	ZZZZ
QAQZ	WIJT	ENTO	\cdots	MIHB

Permutation on Block of Characters

Example

AAAA	AAAB	AAAC	\cdots	ZZZZ
QAQZ	WIJT	ENTO	\cdots	MIHB

- 'code book'

Permutation on Block of Characters

Example

AAAA	AAAB	AAAC	\cdots	ZZZZ
QAQZ	WIJT	ENTO	\cdots	MIHB

- 'code book'
- If blocks are large enough, then frequency analysis becomes impossible (infeasible).

Block Cipher

Block Cipher

- Avoid transport \& storage of huge table
- Introduce computation rule to compute table elements:

$$
T[X]=f_{k e y}(X)
$$

- Design "good" rule f :

Block Cipher

- Avoid transport \& storage of huge table
- Introduce computation rule to compute table elements:

$$
T[X]=f_{\text {key }}(X)
$$

- Design "good" rule f :
- Secure
- Efficient

Block Cipher

- A block cipher with n-bit block and k-bit key is a subset of 2^{k} permutations among all 2^{n} ! permutations on n bits.

Block Cipher

- A block cipher with n-bit block and k-bit key is a subset of 2^{k} permutations among all 2^{n} ! permutations on n bits.

Attack Models

An attack model is a set of assumptions about how attackers might interact with a cipher and what they can and can't do. The goals of an attack model are as follows:

Attack Models

An attack model is a set of assumptions about how attackers might interact with a cipher and what they can and can't do. The goals of an attack model are as follows:

- To set requirements for cryptographers who design ciphers, so that they know what attackers and what kinds of attacks to protect against.

Attack Models

An attack model is a set of assumptions about how attackers might interact with a cipher and what they can and can't do. The goals of an attack model are as follows:

- To set requirements for cryptographers who design ciphers, so that they know what attackers and what kinds of attacks to protect against.
- To give guidelines to users, about whether a cipher will be safe to use in their environment.

Attack Models

An attack model is a set of assumptions about how attackers might interact with a cipher and what they can and can't do. The goals of an attack model are as follows:

- To set requirements for cryptographers who design ciphers, so that they know what attackers and what kinds of attacks to protect against.
- To give guidelines to users, about whether a cipher will be safe to use in their environment.
- To provide clues for cryptanalysts who attempt to break ciphers, so they know whether a given attack is valid. An attack is only valid if it's doable in the model considered.

Attack Models

An attack model is a set of assumptions about how attackers might interact with a cipher and what they can and can't do. The goals of an attack model are as follows:

- To set requirements for cryptographers who design ciphers, so that they know what attackers and what kinds of attacks to protect against.
- To give guidelines to users, about whether a cipher will be safe to use in their environment.
- To provide clues for cryptanalysts who attempt to break ciphers, so they know whether a given attack is valid. An attack is only valid if it's doable in the model considered.

All models are wrong; the practical question is how wrong do they have to be to not be useful - George E. P. Box

Attack Models

Black-Box Model:

Attack Models

Black-Box Model:

- Ciphertext-only Attack (COA): the adversary knows nothing but a number of ciphertexts polynomial in the input size.
- Known Plaintext Attack (KPA): the adversary has access to a polynomial number of plaintext ciphertext pairs.
- Chosen Ciphertext Attack (CCA/CCA1 : the adversary may select a polynomial number of ciphertexts for which to see the plaintext.
- Chosen Plaintext Attack (CPA/CPA1): Some attacks only succeed when the plaintexts have a specific form. In order to mount such attacks, Eve must find a way to influence the encrypted plaintexts.
- Adaptive Chosen Plaintext Attack (ACPA/CPA2): the adversary submits plaintexts based on previously obtained ciphertexts.
- Adaptive Chosen Ciphertext Attack (ACCA/CCA2): the adversary submits ciphertexts based on previously obtained plaintexts.

Attack Models

Gray-Box Model:

- In this model, the attacker has access to a cipher's implementation.
- This makes gray-box model more realistic than black-box models for applications.
- It is more difficult to define than black-box ones because they depend on physical, analog properties rather than just on an algorithm's input and outputs.

Attack Models

Gray-Box Model:

- In this model, the attacker has access to a cipher's implementation.
- This makes gray-box model more realistic than black-box models for applications.
- It is more difficult to define than black-box ones because they depend on physical, analog properties rather than just on an algorithm's input and outputs.
- Side-channel attacks are a family of attacks within gray-box model.

Attack Models

White-Box Model:

- In this model, cryptography is deployed in applications that are executed on open devices.
- Attacker has full access to the execution platform.
- Internal details of implementations are completely and alterable at will.
- The challenge that white-box cryptography aims to address is to implement a cryptographic algorithm in software in such a way that cryptographic assets remain secure even when subject to white-box attacks.

Attack Models

White-Box Model:

- In this model, cryptography is deployed in applications that are executed on open devices.
- Attacker has full access to the execution platform.
- Internal details of implementations are completely and alterable at will.
- The challenge that white-box cryptography aims to address is to implement a cryptographic algorithm in software in such a way that cryptographic assets remain secure even when subject to white-box attacks.
- Software implementations that resist such white-box attacks denoted white-box implementations.

Computational vs Information-Theoretic Security

- Information-theoretic security implies that absolutely no information about an encrypted message is leaked, even to an eavesdropper with unlimited computational power.

Computational vs Information-Theoretic Security

- Information-theoretic security implies that absolutely no information about an encrypted message is leaked, even to an eavesdropper with unlimited computational power.
- Computational security incorporates two relaxations:
- Security is only guaranteed against efficient adversaries that run for some feasible amount of time.
- Adversaries can potentially succeed with some very small probability.

Computational vs Information-Theoretic Security

- Information-theoretic security implies that absolutely no information about an encrypted message is leaked, even to an eavesdropper with unlimited computational power.
- Computational security incorporates two relaxations:
- Security is only guaranteed against efficient adversaries that run for some feasible amount of time.
- Adversaries can potentially succeed with some very small probability.

Definition

A scheme is (t, ϵ)-secure if any adversary running for time at most t, succeeds in breaking the scheme with probability at most ϵ.

Security Goals

Cryptographers define two main security goals:

Security Goals

Cryptographers define two main security goals:

- Indistinguishability (IND) Ciphertexts should be indistinguishable from random strings.
- Nonmalleability (NM) Given a ciphertext $C_{1}=\mathbb{E}_{K}\left(P_{1}\right)$, it should be impossible to create another ciphertext, C_{2}, whose corresponding plaintext, P_{2}, is related to P_{1} in a meaningful way.

Even-Mansour

- The Even-Mansour ${ }^{1}$ construction is a block cipher.
- Let n be the block-length.
- Fixed public known permutation π_{1}, where it is easy to compute $\pi(M)$ and $\pi^{-1}(M)$ for any given input $M \in\{0,1\}^{n}$
- Indistinguishable for $\leq 2^{n / 2}$ queries when \mathbf{A} accesses to π_{1}
- Key recovery attack in $2^{n / 2}$ by Daemen Asiacrypt'91

[^0]
Iterative Block Ciphers

- An iterative block cipher consists of r consecutive applications of simpler key-dependent transforms

$$
f=f_{r} \circ f_{r-1} \circ \cdots \circ f_{2} \circ f_{1}
$$

Block Cipher Primitives

Block Cipher Primitives

Claude Elwood Shannon

C. E. SHANNON,

 Communication Theory of Secrecy Systems, 1949.
Block Cipher Primitives: Confusion and Diffusion

- Confusion: is intended to make the relationship between the key and ciphertext as complex as possible.

Block Cipher Primitives: Confusion and Diffusion

- Confusion: is intended to make the relationship between the key and ciphertext as complex as possible.
Today, a common element for achieving confusion is substitution/S-box, which is found in both AES and DES.

Block Cipher Primitives: Confusion and Diffusion

- Confusion: is intended to make the relationship between the key and ciphertext as complex as possible.
Today, a common element for achieving confusion is substitution/S-box, which is found in both AES and DES.
- Diffusion: refers to rearranging or spreading out the bits in the message so that any redundancy in the plaintext is spread out over the ciphertext.

Block Cipher Primitives: Confusion and Diffusion

- Confusion: is intended to make the relationship between the key and ciphertext as complex as possible.

Today, a common element for achieving confusion is substitution/S-box, which is found in both AES and DES.

- Diffusion: refers to rearranging or spreading out the bits in the message so that any redundancy in the plaintext is spread out over the ciphertext.

A simple diffusion element is the bit permutation, which is frequently used within DES.

Block Cipher Primitives: Confusion and Diffusion

- Confusion: is intended to make the relationship between the key and ciphertext as complex as possible.

Today, a common element for achieving confusion is substitution/S-box, which is found in both AES and DES.

- Diffusion: refers to rearranging or spreading out the bits in the message so that any redundancy in the plaintext is spread out over the ciphertext.

A simple diffusion element is the bit permutation, which is frequently used within DES.

Both operations by themselves cannot provide security. The idea is to concatenate confusion and diffusion elements to build so called product ciphers.

Confusion

Example

Let $\mathbf{x}, \mathbf{y} \& \mathbf{k} \in\{0,1\}^{8}$ and $\mathbf{y}=\operatorname{conf}(\mathbf{x}, \mathbf{k})$, where

$$
\begin{aligned}
& y_{1}=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus k_{1} \oplus k_{2} \oplus k_{3} \oplus k_{4} \\
& y_{2}=x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus k_{2} \oplus k_{3} \oplus k_{4} \oplus k_{5} \\
& y_{3}=x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus k_{3} \oplus k_{4} \oplus k_{5} \oplus k_{6} \\
& y_{4}=x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus k_{4} \oplus k_{5} \oplus k_{6} \oplus k_{7} \\
& y_{5}=x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8} \oplus k_{5} \oplus k_{6} \oplus k_{7} \oplus k_{8} \\
& y_{6}=x_{6} \oplus x_{7} \oplus x_{8} \oplus x_{1} \oplus k_{6} \oplus k_{7} \oplus k_{8} \oplus k_{1} \\
& y_{7}=x_{7} \oplus x_{8} \oplus x_{1} \oplus x_{2} \oplus k_{7} \oplus k_{8} \oplus k_{1} \oplus k_{2} \\
& y_{8}=x_{8} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus k_{8} \oplus k_{1} \oplus k_{2} \oplus k_{3}
\end{aligned}
$$

Confusion

Example

Let $\mathbf{x}, \mathbf{y} \& \mathbf{k} \in\{0,1\}^{8}$ and $\mathbf{y}=\operatorname{conf}(\mathbf{x}, \mathbf{k})$, where

$$
\begin{aligned}
& y_{1}=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus k_{1} \oplus k_{2} \oplus k_{3} \oplus k_{4} \\
& y_{2}=x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus k_{2} \oplus k_{3} \oplus k_{4} \oplus k_{5} \\
& y_{3}=x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus k_{3} \oplus k_{4} \oplus k_{5} \oplus k_{6} \\
& y_{4}=x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus k_{4} \oplus k_{5} \oplus k_{6} \oplus k_{7} \\
& y_{5}=x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8} \oplus k_{5} \oplus k_{6} \oplus k_{7} \oplus k_{8} \\
& y_{6}=x_{6} \oplus x_{7} \oplus x_{8} \oplus x_{1} \oplus k_{6} \oplus k_{7} \oplus k_{8} \oplus k_{1} \\
& y_{7}=x_{7} \oplus x_{8} \oplus x_{1} \oplus x_{2} \oplus k_{7} \oplus k_{8} \oplus k_{1} \oplus k_{2} \\
& y_{8}=x_{8} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus k_{8} \oplus k_{1} \oplus k_{2} \oplus k_{3}
\end{aligned}
$$

It has bad confusion, as they are linear relations.

Diffusion

Example

$$
\begin{aligned}
& y_{1}=f_{1}\left(x_{1}, x_{2}, k_{1}, k_{2}\right) \\
& y_{2}=f_{2}\left(x_{2}, x_{3}, k_{2}, k_{3}\right) \\
& y_{3}=f_{3}\left(x_{3}, x_{4}, k_{3}, k_{4}\right) \\
& y_{4}=f_{4}\left(x_{4}, x_{5}, k_{4}, k_{5}\right) \\
& y_{5}=f_{5}\left(x_{5}, x_{6}, k_{5}, k_{6}\right) \\
& y_{6}=f_{6}\left(x_{6}, x_{7}, k_{6}, k_{7}\right) \\
& y_{7}=f_{7}\left(x_{7}, x_{8}, k_{7}, k_{8}\right) \\
& y_{8}=f_{8}\left(x_{8}, x_{1}, k_{8}, k_{1}\right)
\end{aligned}
$$

Diffusion

Example

$$
\begin{aligned}
& y_{1}=f_{1}\left(x_{1}, x_{2}, k_{1}, k_{2}\right) \\
& y_{2}=f_{2}\left(x_{2}, x_{3}, k_{2}, k_{3}\right) \\
& y_{3}=f_{3}\left(x_{3}, x_{4}, k_{3}, k_{4}\right) \\
& y_{4}=f_{4}\left(x_{4}, x_{5}, k_{4}, k_{5}\right) \\
& y_{5}=f_{5}\left(x_{5}, x_{6}, k_{5}, k_{6}\right) \\
& y_{6}=f_{6}\left(x_{6}, x_{7}, k_{6}, k_{7}\right) \\
& y_{7}=f_{7}\left(x_{7}, x_{8}, k_{7}, k_{8}\right) \\
& y_{8}=f_{8}\left(x_{8}, x_{1}, k_{8}, k_{1}\right)
\end{aligned}
$$

It has bad diffusion.

Diffusion

Example

$$
\begin{aligned}
& y_{1}=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus k_{1} \oplus k_{2} \oplus k_{3} \oplus k_{4} \\
& y_{2}=x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus k_{2} \oplus k_{3} \oplus k_{4} \oplus k_{5} \\
& y_{3}=x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus k_{3} \oplus k_{4} \oplus k_{5} \oplus k_{6} \\
& y_{4}=x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus k_{4} \oplus k_{5} \oplus k_{6} \oplus k_{7} \\
& y_{5}=x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8} \oplus k_{5} \oplus k_{6} \oplus k_{7} \oplus k_{8} \\
& y_{6}=x_{6} \oplus x_{7} \oplus x_{8} \oplus x_{1} \oplus k_{6} \oplus k_{7} \oplus k_{8} \oplus k_{1} \\
& y_{7}=x_{7} \oplus x_{8} \oplus x_{1} \oplus x_{2} \oplus k_{7} \oplus k_{8} \oplus k_{1} \oplus k_{2} \\
& y_{8}=x_{8} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus k_{8} \oplus k_{1} \oplus k_{2} \oplus k_{3}
\end{aligned}
$$

Diffusion

Example

$$
\begin{aligned}
& y_{1}=x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4} \oplus k_{1} \oplus k_{2} \oplus k_{3} \oplus k_{4} \\
& y_{2}=x_{2} \oplus x_{3} \oplus x_{4} \oplus x_{5} \oplus k_{2} \oplus k_{3} \oplus k_{4} \oplus k_{5} \\
& y_{3}=x_{3} \oplus x_{4} \oplus x_{5} \oplus x_{6} \oplus k_{3} \oplus k_{4} \oplus k_{5} \oplus k_{6} \\
& y_{4}=x_{4} \oplus x_{5} \oplus x_{6} \oplus x_{7} \oplus k_{4} \oplus k_{5} \oplus k_{6} \oplus k_{7} \\
& y_{5}=x_{5} \oplus x_{6} \oplus x_{7} \oplus x_{8} \oplus k_{5} \oplus k_{6} \oplus k_{7} \oplus k_{8} \\
& y_{6}=x_{6} \oplus x_{7} \oplus x_{8} \oplus x_{1} \oplus k_{6} \oplus k_{7} \oplus k_{8} \oplus k_{1} \\
& y_{7}=x_{7} \oplus x_{8} \oplus x_{1} \oplus x_{2} \oplus k_{7} \oplus k_{8} \oplus k_{1} \oplus k_{2} \\
& y_{8}=x_{8} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus k_{8} \oplus k_{1} \oplus k_{2} \oplus k_{3}
\end{aligned}
$$

It has good diffusion.

Design Criteria

Design Criteria

- Confusion and diffusion methods required to design block ciphers.
- The following methods are applied to design confusion and diffusion

Design Criteria

- Confusion and diffusion methods required to design block ciphers.
- The following methods are applied to design confusion and diffusion
(1) S-box + Permutation

Design Criteria

- Confusion and diffusion methods required to design block ciphers.
- The following methods are applied to design confusion and diffusion
(1) S-box + Permutation
(1.) S-box + MDS matrix

Design Criteria

- Confusion and diffusion methods required to design block ciphers.
- The following methods are applied to design confusion and diffusion
(1) S-box + Permutation
(1.) S-box + MDS matrix
(1.) ARX

Design Criteria

- Confusion and diffusion methods required to design block ciphers.
- The following methods are applied to design confusion and diffusion
(1.) S-box + Permutation
(1.) S-box + MDS matrix
(1.) ARX (Mod Addition + Rotation \& Xoring)

Comparison Among Feistel Networks, SPN and ARX

	Confusion	Diffusion
Feistel	Nonlinear function F	Branch swapping
SPN	S-box	Linear transformation
ARX	Modular addition	XOR, Bit rotation

Padding

- Padding for block ciphers is specified in the PKCS\#7 and in RFC5652

Padding

- Padding for block ciphers is specified in the PKCS\#7 and in RFC5652
- The rules for padding 16-byte blocks
- If there are one byte left, pad the message with 15 bytes $0 f$.

Padding

- Padding for block ciphers is specified in the PKCS\#7 and in RFC5652
- The rules for padding 16-byte blocks
- If there are one byte left, pad the message with 15 bytes $0 f$.
- If there are two bytes left, pad the message with 14 bytes $0 e$.

Padding

- Padding for block ciphers is specified in the PKCS\#7 and in RFC5652
- The rules for padding 16-byte blocks
- If there are one byte left, pad the message with 15 bytes $0 f$.
- If there are two bytes left, pad the message with 14 bytes $0 e$.
- If there are 15 bytes left, pad the message with 1 bytes 01 .

Padding

- Padding for block ciphers is specified in the PKCS\#7 and in RFC5652
- The rules for padding 16-byte blocks
- If there are one byte left, pad the message with 15 bytes $0 f$.
- If there are two bytes left, pad the message with 14 bytes $0 e$.
- If there are 15 bytes left, pad the message with 1 bytes 01 .
- If it is a multiple of 16 bytes, add 16 bytes 10 .

Padding

															01
														02	02
													03	03	03
												04	04	04	04
											05	05	05	05	05
										06	06	06	06	06	06
									07	07	07	07	07	07	07
								08	08	08	08	08	08	08	08
							09	09	09	09	09	09	09	09	09
						OA	OA	OA	OA	OA	0A	OA	OA	OA	0A
					OB										
				OC	0 C	OC	OC	OC	OC	OC	0 C	0 C	OC	OC	OC
			OD												
		OE													
	OF														
10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10

Horst Feistel

Dhananjoy Dey (Indian Institute of Informa

Outline

(1) Introduction

(2) Feistel Network

- DES
(3) SPN
- AES

4 Modes of Operation

Balanced and Generalized Feistels

Used in DES, Camellia, E2, Blowfish, Twofish, CAST128, KASUMI, MISTY, ...

Generalized Feistel Network (GFN)

- type-II 4-line GFN

Used in CLEFIA, SHAvite-3, RC6,...

Balanced and Generalized Feistels

BFN

Type-I GFN

Type-II GFN

Type-III GFN

Classification of 4-line GFNs

Block Ciphers

Introduction

May 1973 : NBS issued a call for proposals for a block cipher suitable for federal use
Aug 1974 : a second call was made DEA (modified Lucifer) was submitted by IBM.
Mar 1975 : the algorithm was published for public comment
Aug 1976 : accepted as a standard
Jan 1977 : published as FIPS 46

Introduction

May 1973 : NBS issued a call for proposals for a block cipher suitable for federal use
Aug 1974 : a second call was made DEA (modified Lucifer) was submitted by IBM.
Mar 1975 : the algorithm was published for public comment
Aug 1976 : accepted as a standard
Jan 1977 : published as FIPS 46

It was designed by IBM, verified by NSA and published by the NBS.

Introduction

May 1973 : NBS issued a call for proposals for a block cipher suitable for federal use
Aug 1974 : a second call was made DEA (modified Lucifer) was submitted by IBM.
Mar 1975 : the algorithm was published for public comment
Aug 1976 : accepted as a standard
Jan 1977 : published as FIPS 46

It was designed by IBM, verified by NSA and published by the NBS.

2004	$:$	NIST withdrew DES
2009	$:$	NIST withdrew 2-key TDES
until 2030	$:$	3-key TDES

Introduction

DES Development was controversial

Introduction

DES Development was controversial

- NSA secretly involved
- design process was secret
- key length reduced from 128-bit to 56-bit
- two 4×4 S-boxes to eight 6×4 S-boxes
- subtle changes to Lucifer algorithm

DES Numerology

DES is a Feistel cipher with

- 64-bit block length
- 56-bit key length
- 16 rounds
- 48-bit of key used in each round

Encryption Algorithm

Initial Permutation IP and Inverse Permutation IP $^{-1}$

IP								
58	50	42	34	26	18	10	2	
60	52	44	36	28	20	12	4	
62	54	46	38	30	22	14	6	
64	56	48	40	32	24	16	8	
57	49	41	33	25	17	9	1	
59	51	43	35	27	19	11	3	
61	53	45	37	29	21	13	5	
63	55	47	39	31	23	15	7	
IP $^{-1}$								
40	8	48	16	56	24	64	32	
39	7	47	15	55	23	63	31	
38	6	46	14	54	22	62	30	
37	5	45	13	53	21	61	29	
36	4	44	12	52	20	60	28	
35	3	43	11	51	19	59	27	
34	2	42	10	50	18	58	26	
33	1	41	9	49	17	57	25	

Encryption Algorithm

DES Round Function

Encryption Algorithm

DES Round Function

L (32 bits)

L(32 bits)
$R(32$ bits $)$

Encryption Algorithm

Expansion E and Permutation P

\mathbf{E}					
32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

\mathbf{P}			
16	7	20	21
29	12	28	17
1	15	23	26
5	18	31	10
2	8	24	14
32	27	3	9
19	13	30	6
22	11	4	25

Encryption Algorithm

DES S-boxes

$S 1$	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
p_{0}	e	4	d	1	2	f	b	8	3	a	6	c	5	9	0	7
p_{1}	0	f	7	4	e	2	d	1	a	6	c	b	9	5	3	8
p_{2}	4	1	e	8	d	6	2	b	f	c	9	7	3	a	5	0
p_{3}	f	c	8	2	4	9	1	7	5	b	3	e	a	0	6	d

| S2 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$|$

S 3	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
p_{0}	a	0	9	e	6	3	f	5	1	d	c	7	b	4	2	8
p_{1}	d	7	0	9	3	4	6	a	2	8	5	e	c	b	f	1
p_{2}	d	6	4	9	8	f	3	0	b	1	2	c	5	a	e	7
p_{3}	1	a	d	0	6	9	8	7	4	f	e	3	b	5	2	c

$S 4$	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
p_{0}	7	d	e	3	0	6	9	a	1	2	8	5	b	c	4	f
p_{1}	d	8	b	5	6	f	0	3	4	7	2	c	1	a	e	9
p_{2}	a	6	9	0	c	b	7	d	f	1	3	e	5	2	8	4
p_{3}	3	f	0	6	a	1	d	8	9	4	5	b	c	7	2	e

S5	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
p_{0}	2	c	4	1	7	a	b	6	8	5	3	f	d	0	e	9
p_{1}	e b	2	c	4	7	d	1	5	0	f	a	3	9	8	6	
p_{2}	4	2	1	b	a	d	7	8	f	9	c	5	6	3	0	e
p_{3}	b	8	c	7	1	e	2	d	6	f	0	9	a	4	5	3

$\left.\begin{array}{|l|lllllllllllllll|}\hline \text { S6 } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & a & b & c & d & e\end{array}\right]$

S7	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
p_{0}	4	b	2	e	f	0	8	d	3	c	9	7	5	a	6	1
p_{1}	d	0	b	7	4	9	1	a	e	3	5	c	2	f	8	6
p_{2}	1	4	b	d	c	3	7	e	a	f	6	8	0	5	9	2
p_{3}	6	b	d	8	1	4	a	7	9	5	0	f	e	2	3	c

$\mathbf{S 8}$	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
p_{0}	d	2	8	4	6	f	b	1	a	9	3	e	5	0	c	7
p_{1}	1	f	d	8	a	3	7	4	c	5	6	b	0	e	9	2
p_{2}	7	b	4	1	9	c	e	2	0	5	a	d	f	3	5	8
p_{3}	2	1	e	7	4	a	8	d	f	c	9	0	3	5	6	b

DES Key Schedule

DES Key Schedule

PC1				PC2				
57	49	41	33	25	17	9	14	17
11	24	1	5					
1	58	50	42	34	26	18	3	28
3	15	6	21	10				
10	2	59	51	43	35	27	23	19
19	11	3	60	52	44	36	26	8
16	7	27	20	13	2			
63	55	47	39	31	23	15	41	52
7	62	54	46	38	30	22	47	55
14	6	61	53	45	37	29	44	51
21	45	33	39	56	34	53		
21	13	5	28	20	12	4	46	42

nound	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
n_{1}	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2

DES Encryption Algorithm

DES Diffusion

Input: 1
Permuted: 1
Round 1: 1
Round 2: .*...... * 5
Round 3: 18
Round 4: . . *. *****, *, *****, *, * 28
 29
Round 6: ...*...** 26Round 7: *****...***....**...*...**..*.........**......*.*...**.*.**.......*Round 9: ***.*.***...**.*.****......**.*.....*.*.*.**...............**.*....**
Round 10: *.*...*.*.**.*...*.**.***,**.*...****,*,***...**.*,****......**.*..Round 11: .. ******..........******....*....*.*...**.**....*.**.***.**.*...*ROLITD 12 , *, **

Dutput: $\ldots * \ldots * * *, *, \ldots * \ldots * * * \ldots * * * * *, \ldots, \ldots, \ldots *, *, *, * *, *, \ldots *, *, * * *$,

Design Criteria of The S-boxes

- No S-box is a linear or affine function of the input.
- Changing 1 bit in the input to an S-box results in changing at least 2 output bits.
- The S-boxes were chosen to minimize the difference between the number of 1 's and 0's when any single bit is held constant.
- For any S-box S, it holds that $S[x]$ and $S[x \oplus 001100]$ differ in at least 2 bits.
- For any S-box S, it holds that $S[x] \neq S[x \oplus 11 r s 00]$ for any binary values r and s.
- If 2 different 48 -bit inputs to the 8 S -boxes result in equal outputs, then there must be different inputs to at least 3 neighbouring S-boxes.
- For any S-box it holds for any nonzero 6-bit value α and for any 4-bit value β, that the number of solutions for x to the equation $S[x] \oplus S[x \oplus \alpha]=\beta$ is at most 16 .

三

Properties of The P Permutation

- The 4 bits output from an S-box are distributed so that they affect 6 different S-boxes in the following round (4 boxes directly and 2 via the expansion mapping).
- If an output bit from S-box i affects one of the 2 middle input bits to S-box j (in the next round), then an output bit from S-box i cannot affect a middle bit of S-box i.
- The middle 6 inputs to 2 neighbouring S-boxes (those not shared by any other S-boxes) are constructed from the outputs from 6 different S-boxes in the previous round.
- The middle 10 input bits to 3 neighbouring S-boxes, 4 bits from the 2 outer S-boxes and 6 from the middle S-box (i.e., those not shared by any other S-boxes), are constructed from the outputs from all S-boxes in the previous round.

Structural Properties

Complementation Property

$$
\overline{D E S_{k}(m)}=D E S_{\bar{k}}(\bar{m}) .
$$

Structural Properties

Weak Keys

Definition

A DES key k is said to be weak if the following relationship holds

$$
D E S_{k}\left(D E S_{k}(m)\right)=m, \quad \forall m .
$$

4 weak keys of DES

$$
\begin{array}{ll}
0101010101010101 & \text { fefefefefefefefe } \\
1 f 1 f 1 f 1 f 1 f 1 f 1 f 1 f & \text { e0e0e0e0e0e0e0e0 }
\end{array}
$$

Structural Properties

Semi-Weak Keys

Definition

A pair of keys $k_{1} \& k_{2}$ is said to be semi-weak keys if the following relation satisfies

$$
D E S_{k_{1}}\left(D E S_{k_{2}}(m)\right)=m, \quad \forall m .
$$

6 pairs of semi-weak keys of DES

```
01fe01fe01fe01fe
fe01fe01fe01fe01
1ffe1ffe1ffe1ffe
felffelffelffelf
1fe01fe01fe01fe0
e01fe01fe01fe01f
011f011f011f011f
1f011f011f011f01
```

01e001e001e001e0
e001e001e001e001
e0fee0fee0fee0fe fee 0 fee 0 fee 0 fee 0

Weak Permutation

Definition

A permutation F is called a weak permutation if given

$$
y_{1}=F_{k}\left(x_{1}\right) \& \quad y_{2}=F_{k}\left(x_{2}\right)
$$

it is 'easy' to extract the key k.

Question
Does 3 rounds of DES form a weak permutation?

Common Proposals for Triple Encryption Using a Generic Block Cipher

 클

DESX

(1) The last algorithm of the DES family is DESX
(2) This is proposed by Ronald Rivest intended to increase complexity by applying key whitening

DESX

(1) The last algorithm of the DES family is DESX
(2) This is proposed by Ronald Rivest intended to increase complexity by applying key whitening

- It requires 184 key bits

DESX

(1) The last algorithm of the DES family is DESX
(2) This is proposed by Ronald Rivest intended to increase complexity by applying key whitening

- It requires 184 key bits
- Effective key bits ≈ 118

Outline

(1) Introduction

2 Feistel Network

(3) SPN

- AES

4 Modes of Operation

Joan Daemen

Vincent Rijmen

Introduction I

Jan 1997 : NIST announced the initiation.
Sep 1997 : published the final request for candidate nominations.

The functional requirements

- support block length of 128 bits.
- support key length of 128, 192 and 256 bits.
- as secure as T-DES but much more efficient.
- the encryption scheme available on a world wide royalty-free basis.

Aug 1998 : 15 candidates accepted for the $1^{\text {st }}$ AES candidate conference.
Mar 1999 : after the $1^{\text {st }}$ evaluation NIST selected 5 finalists.

Introduction II

Rijndael
Serpent
RC6
Mars
Twofish

Oct 2000 : NIST announced that Rijndael was "the best overall algorithm for the AES".
Nov 2001 : Dept of Commerce officially declared Rijndael as the AES. (FIPS 197)
May 2002 : AES is effective

Review of AES

NIST Requests Public Comments on Several Existing Cryptography Standards and Special Publications

As part of a periodic review of its cryptography standards and NIST Special Publications, NIST is requesting comments on FIPS 197, SP 800-38A (and Addendum), SP 800-15, SP 800-25, and SP 800-32. Comments are due by June 11, 2021.

May 10, 2021

NIST is in the process of a periodic review and maintenance of its cryptography standards and NIST Special Publications. A description of the review process is awalable at the Ceypto Publication Review Project rage.

Currently, we are reviewing the following publications:

- Federal Information Processing Standard (FIPS) 197, Advanced Encryption Standord (AES), 2001
- NIST Special Publication 〈SP) 800-38A, ficcommendation for Block Cipher Modes of Operotion: Methods and Techniques, 2001
- NIST SP $500-38 \mathrm{~A}$ Addendum, Recommendation for Block Cipher Modes of Operotian: Three Variants af Ciphertext Stealing for CBC Made, 2010

```
A. ORGANIZATIONS
```

Information Technology Laboratory
Computer Security Division
Cryptogaphic Technology Group

SIGN UP FOR UPDATES FROM NIST

```
https://www.nist.gov/news-events/news/2021/05/
nist-requests-public-comments-several-existing-cryptography-standards-and
https://csrc.nist.gov/projects/crypto-publication-review-project
```

Block Ciphers
January 3, 2024
$57 / 104$

Update of AES

NIST Updates FIPS 197, Advanced Encryption Standard (AES)

May 09, 2023

Today, NIST has published an update of Federal Information Processing Standards Publication (FIPS) 197, Advonced Encryption Standard(AES). This update makes no technical changes to the algorithm specified in the standard, which was originally published in 2001.

However, this update includes extensive editorial improvements to the original version, including the following:

- The front matter is modernized (e.g., a foreword and abstract are added).
- Terms and symbols are defined more comprehensively and consistently.
- Formatting/typesetting is improved in a variety of ways.
- Unnecessary formalism is removed.
- Diagrams for the three key schedules are included.
- Some references were updated, and additional references are provided.

The changes are documented in greater detail in Appendix D of the updated FIPS. NIST priginally proposed to update FIPS 197 in this manner on December 19, 2022. The proposal included the release of a draft of the FIPS update for public comment, as well as a summary of the determination that no technical revisions were necessary. No public comments were received on the proposal nor the draft.
https://csrc.nist.gov/news/2023/nist-updates-fips-197-advanced-encryption-standard

AES Numerology

AES is a SPN cipher with

- 128-bit block length
- 128-, 192- or 256-bit key length
- 10, 12 or 14 rounds

Mathematical Background

- Addition (in the field $G F\left(2^{8}\right)$)

Mathematical Background

- Addition (in the field $G F\left(2^{8}\right)$)

The sum of two elements is the polynomial with coefficients that are given by the sum modulo 2 of the coefficients of the two terms.

Mathematical Background

- Addition (in the field $G F\left(2^{8}\right)$)

The sum of two elements is the polynomial with coefficients that are given by the sum modulo 2 of the coefficients of the two terms.

Example

$$
57+83=?
$$

Mathematical Background

- Addition (in the field $G F\left(2^{8}\right)$)

The sum of two elements is the polynomial with coefficients that are given by the sum modulo 2 of the coefficients of the two terms.

Example

$$
57+83=?
$$

Mathematical Background

- Multiplication

Multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial over $G F(2)$ of degree 8

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1 \text { or } 11 B
$$

Mathematical Background

- Multiplication

Multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial over $G F(2)$ of degree 8

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1 \text { or } 11 B
$$

Example

$$
57 \times 83=?
$$

Mathematical Background

- Multiplication

Multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial over $G F(2)$ of degree 8

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1 \text { or } 11 B
$$

Example

$$
57 \times 83=?
$$

Mathematical Background

Choice of Irreducible Polynomial

- AES uses arithmetic in $G F\left(2^{8}\right)$ with the irreducible polynomial $x^{8}+x^{4}+x^{3}+x+1$.
- There are 30 irreducible polynomials among which 16 are primitive polynomials.
- It is irrelevant whether the irreducible polynomial is primitive or not, due to the isomorphism of all fields of $G F\left(2^{8}\right)$.
- The isomorphism transformation that takes one description of a cipher under an irreducible polynomial to another description with a different irreducible polynomial is linear.
- There is no advantage to select a primitive polynomial over the current polynomial of Rijndael.

클

List of 8 Degree Irreducible Polynomials

100011011	51
100011101	255
100101011	255
100101101	255
100111001	17
100111111	85
101001101	255
101011111	255
101100011	255
101100101	255

List of 8 Degree Irreducible Polynomials ...

$$
\begin{array}{l|r}
101101001 & 255 \\
101110001 & 255 \\
101110111 & 85 \\
101111011 & 85 \\
110000111 & 255 \\
110001011 & 85 \\
110001101 & 255 \\
110011111 & 51 \\
110100011 & 85 \\
110101001 & 255
\end{array}
$$

List of 8 Degree Irreducible Polynomials ...

110110001	51
110111101	85

85
17
85
255
51
255

Mathematical Background

- The extended algorithm of Euclid

The multiplication defined above is associative and there is an identity element (' 01^{\prime} '). For any polynomial $b(x)$ of degree at most 7 over $G F(2)$, the extended algorithm of Euclid can be used to compute polynomials $a(x), c(x)$ such that

$$
b(x) a(x)+m(x) c(x)=1
$$

It follows that the set of 256 possible byte values, with the $X O R$ as addition and the multiplication defined as above has the structure of the finite field $G F\left(2^{8}\right)$.

Mathematical Background

- Multiplication by x

Mathematical Background

- Multiplication by x

If we multiply $b(x)$ by the polynomial x, we have :

$$
b_{7} x^{8}+b_{6} x^{7}+b_{5} x^{6}+b_{4} x^{5}+b_{3} x^{4}+b_{2} x^{3}+b_{1} x^{2}+b_{0} x
$$

- $(x * b(x))$ is obtained by reducing the above result $\bmod m(x)$.
(1) If $b_{7}=0$, the reduction is identity operation;
(1.) if $b_{7}=1, m(x)$ must be subtracted.

Example

$$
57 \times 13=57 \times(01 \oplus 02 \oplus 10)
$$

Mathematical Background

- Multiplication by x

If we multiply $b(x)$ by the polynomial x, we have :

$$
b_{7} x^{8}+b_{6} x^{7}+b_{5} x^{6}+b_{4} x^{5}+b_{3} x^{4}+b_{2} x^{3}+b_{1} x^{2}+b_{0} x
$$

- $(x * b(x))$ is obtained by reducing the above result $\bmod m(x)$.
(1) If $b_{7}=0$, the reduction is identity operation;
(1. if $b_{7}=1, m(x)$ must be subtracted.

Example

$$
\begin{aligned}
57 \times 13 & =57 \times(01 \oplus 02 \oplus 10) \\
& =57 \oplus A E \oplus 07=F E .
\end{aligned}
$$

AES-128-Bit Encryption

128 bit plaintext
AddRoundKey \longrightarrow initial key whitening

AES-128-Bit Encryption

AES-128-Bit Encryption

AES-192- \& AES-256-Bit Encryption

AES-192

C. Cid, S. Murphy \& M. Robshaw,

Algebraic Aspects of the Advanced Encryption Standard, Springer 2006.三

AES-192- \& AES-256-Bit Encryption

AES-192

AES-256
E. Cid, S. Murphy \& M. Robshaw,

Algebraic Aspects of the Advanced Encryption Standard, Springer, 2006

AES-128

Plaintext 16 bytes (128 bits)

AES-128

Plaintext 16 bytes (128 bits)

AES-128

Plaintext 16 bytes (128 bits)

b_{0}	b_{4}	b_{8}	b_{12}					
b_{1}	b_{5}	b_{9}	b_{13}					
b_{2}	b_{6}	b_{10}	b_{14}					
b_{3}	b_{7}	b_{11}	b_{15}	\oplus	k_{0}	k_{4}	k_{8}	k_{12}
:---	:---	:---	:---					
k_{1}	k_{5}	k_{9}	k_{13}					
k_{2}	k_{6}	k_{10}	k_{14}					
k_{3}	k_{7}	k_{11}	k_{15}					

AES-128

Plaintext 16 bytes (128 bits)

Design Criteria of AES S-Box

The AES S-Box is the composition of the following 3 functions:
(1) $\phi_{1}: G F\left(2^{8}\right) \rightarrow G F\left(2^{8}\right)$

$$
\begin{array}{rllll}
f & \mapsto & f^{-1} & \text { if } f \neq 0 \\
& \mapsto & \neq & \text { if } f=0
\end{array}
$$

Design Criteria of AES S-Box

The AES S-Box is the composition of the following 3 functions:
(1) $\phi_{1}: G F\left(2^{8}\right) \rightarrow G F\left(2^{8}\right)$

$$
\begin{array}{rllll}
f & \mapsto & f^{-1} & \text { if } f \neq 0 \\
& \mapsto & & \text { if } & f=0
\end{array}
$$

(2) $L: G F\left(2^{8}\right) \rightarrow G F\left(2^{8}\right)$

$$
f \mapsto\left(x^{4}+x^{3}+x^{2}+x+1\right) \cdot f \quad \bmod \left(x^{8}+1\right)
$$

Design Criteria of AES S-Box

The AES S-Box is the composition of the following 3 functions:
(1) $\phi_{1}: G F\left(2^{8}\right) \rightarrow G F\left(2^{8}\right)$

$$
\begin{array}{rllll}
f & \mapsto & f^{-1} & \text { if } f \neq 0 \\
& \mapsto & & \text { if } & f=0
\end{array}
$$

(2) $L: G F\left(2^{8}\right) \rightarrow G F\left(2^{8}\right)$

$$
f \mapsto\left(x^{4}+x^{3}+x^{2}+x+1\right) \cdot f \quad \bmod \left(x^{8}+1\right)
$$

(3) $\phi_{2}: G F\left(2^{8}\right) \rightarrow G F\left(2^{8}\right)$

$$
f \mapsto\left(x^{6}+x^{5}+x+1\right)+f
$$

S-box $=\phi_{2} \circ \mathbf{L} \circ \phi_{1}$.

AES S-box

	y															
	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	63	7 c	77	7b	f2	6b	$6 f$	c5	30	01	67	2b	fe	d7	ab	76
1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
2	b7	fd	93	26	36	3 f	£7	CC	34	a5	e5	f1	71	d8	31	15
3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4	09	83	2c	1a	1b	6 e	5a	a0	52	3b	d6	b3	29	e3	$2 f$	84
5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4 a	4c	58	cf
6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7 f	50	3c	9 f	a8
7	51	a3	40	8 f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
8	cd	0 C	13	ec	51	97	44	17	c4	a7	7 e	3d	64	5d	19	73
9	60	81	4 f	dc	22	2a	90	88	46	ee	b8	14	de	5e	Ob	db
a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b	e7	c8	37	6d	8d	d5	4 e	a9	6c	56	f4	ea	65	7a	ae	08
c	ba	78	25	2 e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9 e
e	e1	f8	98	11	69	d9	8 e	94	9b	1 e	87	e9	ce	55	28	df
f	8 c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16

AES-128

$S\left(b_{0} \oplus k_{0}\right)$	$S\left(b_{4} \oplus k_{4}\right)$	$S\left(b_{8} \oplus k_{8}\right)$	$S\left(b_{12} \oplus k_{12}\right)$
$S\left(b_{1} \oplus k_{1}\right)$	$S\left(b_{5} \oplus k_{5}\right)$	$S\left(b_{9} \oplus k_{9}\right)$	$S\left(b_{13} \oplus k_{13}\right)$
$S\left(b_{2} \oplus k_{2}\right)$	$S\left(b_{6} \oplus k_{6}\right)$	$S\left(b_{10} \oplus k_{10}\right)$	$S\left(b_{14} \oplus k_{14}\right)$
$S\left(b_{3} \oplus k_{3}\right)$	$S\left(b_{7} \oplus k_{7}\right)$	$S\left(b_{11} \oplus k_{11}\right)$	$S\left(b_{15} \oplus k_{15}\right)$

AES-128

$S\left(b_{0} \oplus k_{0}\right)$	$S\left(b_{4} \oplus k_{4}\right)$	$S\left(b_{8} \oplus k_{8}\right)$	$S\left(b_{12} \oplus k_{12}\right)$
$S\left(b_{1} \oplus k_{1}\right)$	$S\left(b_{5} \oplus k_{5}\right)$	$S\left(b_{9} \oplus k_{9}\right)$	$S\left(b_{13} \oplus k_{13}\right)$
$S\left(b_{2} \oplus k_{2}\right)$	$S\left(b_{6} \oplus k_{6}\right)$	$S\left(b_{10} \oplus k_{10}\right)$	$S\left(b_{14} \oplus k_{14}\right)$
$S\left(b_{3} \oplus k_{3}\right)$	$S\left(b_{7} \oplus k_{7}\right)$	$S\left(b_{11} \oplus k_{11}\right)$	$S\left(b_{15} \oplus k_{15}\right)$

Apply ShiftRows

$S\left(b_{0} \oplus k_{0}\right)$	$S\left(b_{4} \oplus k_{4}\right)$	$S\left(b_{8} \oplus k_{8}\right)$	$S\left(b_{12} \oplus k_{12}\right)$
$S\left(b_{5} \oplus k_{5}\right)$	$S\left(b_{9} \oplus k_{9}\right)$	$S\left(b_{13} \oplus k_{13}\right)$	$S\left(b_{1} \oplus k_{1}\right)$
$S\left(b_{10} \oplus k_{10}\right)$	$S\left(b_{14} \oplus k_{14}\right)$	$S\left(b_{2} \oplus k_{2}\right)$	$S\left(b_{6} \oplus k_{6}\right)$
$S\left(b_{15} \oplus k_{15}\right)$	$S\left(b_{3} \oplus k_{3}\right)$	$S\left(b_{7} \oplus k_{7}\right)$	$S\left(b_{11} \oplus k_{11}\right)$

Mix Columns

- In mix columns transformation each column is considered as a polynomial over $G F\left(2^{8}\right)$ of degree 3 and multiplied with a fixed polynomial

$$
03 \cdot x^{3}+01 \cdot x^{2}+01 \cdot x+02\left(\bmod x^{4}+1\right)
$$

- Mix columns transformation can also be represented by a matrix M multiplication, where

$$
M=\left(\begin{array}{llll}
02 & 03 & 01 & 01 \\
01 & 02 & 03 & 01 \\
01 & 01 & 02 & 03 \\
03 & 01 & 01 & 02
\end{array}\right)
$$

Mix Columns

Encryption and Decryption

Inverse S-box

AES Key Schedule

(1.) It takes a 4-word (128 bits) key and produces a linear array of 44 words (1408 bits).
(1. The key is copied into the $1^{\text {st }} 4$ words of the expanded key.
(1.) In the expanded key each added word $W[i]$ depends on $W[i-1]$ and $W[i-4]$.
(1.) If i is a multiple of 4 then

$$
W[i]=S u b W \operatorname{ord}(\operatorname{Rot} W \operatorname{Ord}(W[i-1])) \oplus \operatorname{Rcon}[i / 4] \oplus W[i-4],
$$

where $R \operatorname{con}[1]=1, R \operatorname{con}[j]=2 * R \operatorname{con}[j-1]$
(.) Else

$$
W[i]=W[i-1] \oplus W[i-4] .
$$

Key Schedule

AES Diffusion

Round 1

$s 00$	$s 01$	$s 02$	$s 03$
$s 10$	$s 11$	$s 12$	$s 13$
$s 20$	$s 21$	$s 22$	$s 23$
$s 30$	$s 31$	$s 32$	$s 33$

Input

AES Diffusion:
 Single Byte

Round 2

$s^{\prime} 00$	$s^{\prime} 01$	$s^{\prime} 02$	$s^{\prime} 03$
$s^{\prime} 12$	$s^{\prime} 13$	$s^{\prime} 10$	$s^{\prime} 11$
$s^{\prime} 20$	$s^{\prime} 21$	$s^{\prime} 22$	$s^{\prime} 23$
$s^{\prime} 32$	$s^{\prime} 33$	$s^{\prime} 30$	$s^{\prime} 31$
$s^{\prime \prime} 00$	$s^{\prime \prime} 01$	$s^{\prime \prime} 02$	$s^{\prime \prime} 03$
$s^{\prime \prime} 12$	$s^{\prime \prime} 13$	$s^{\prime \prime} 10$	$s^{\prime \prime} 11$
$s^{\prime \prime} 20$	$s^{\prime \prime} 21$	$s^{\prime \prime} 22$	$s^{\prime \prime} 23$
$s^{\prime \prime} 32$	$s^{\prime \prime} 33$	$s^{\prime \prime} 30$	$s^{\prime \prime} 31$

Design Criteria of S-Box

S-Box is defined over $G F\left(2^{8}\right)$ in the following way

$$
\begin{gathered}
y=\operatorname{Sox}(x)=\mathbf{A} * x^{-1}+\mathbf{c}, \text { where } \\
\mathbf{A}=\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right) \mathbf{c}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right)
\end{gathered}
$$

틀

Recommended Block Ciphers (ENISA - Nov 2014)

Primitive	Recommendation	
	Legacy	Future
AES	\checkmark	\checkmark
Camellia	\checkmark	\checkmark

Recommended Block Ciphers (ENISA - Nov 2014)

Primitive	Recommendation	
	Legacy	Future
AES	\checkmark	\checkmark
Camellia	\checkmark	\checkmark
Three-Key-3DES	\checkmark	\times
Two-Key-3DES	\checkmark	\times
Kasumi	\checkmark	\times
Blow $^{\geq 80-\text { bit keys }}$	\checkmark	\times

Recommended Block Ciphers (ENISA - Nov 2014)

Primitive	Recommendation	
	Legacy	Future
AES	\checkmark	\checkmark
Camellia	\checkmark	\checkmark
Three-Key-3DES	\checkmark	\times
Two-Key-3DES	\checkmark	\times
Kasumi	\checkmark	\times
Blow $^{\geq 80-b i t ~ k e y s ~}$	\checkmark	\times
DES	\times	\times

Recommended Block Ciphers (ENISA - Nov 2014)

Primitive	Recommendation	
	Legacy	Future
AES	\checkmark	\checkmark
Camellia	\checkmark	\checkmark
Three-Key-3DES	\checkmark	\times
Two-Key-3DES	\checkmark	\times
Kasumi	\checkmark	\times
Blow $^{\geq}$80-bit keys	\checkmark	\times
DES	\times	\times

https://www.enisa.europa.eu/publications/
algorithms-key-size-and-parameters-report-2014

트

Recommended Block Ciphers

Legacy \times Attack exists or security considered not sufficient. Mechanism should be replaced in Fielded products as a matter of urgency.

Legacy $\checkmark \quad$ No known weaknesses at present. Better alternatives exist.
Lack of security proof or limited key size.

Future $\checkmark \quad$ Mechanism is well studied (often with security proof). Expected to remain secure in 10-50 year lifetime.

What's Removed in TLS1.3?

What's Removed in TLS1.3?

- Key Exchange and Digital Signature:
- Static RSA \& Diffie-Hellman (DHE) and DSA
- Encryption algorithms:
- RC4, 3DES, Camellia.
- Cryptographic Hash algorithms:
- MD5, SHA-1, SHA-224
- Cipher Modes:
- AES-CBC (bans all nonAEAD ciphers)

Outline

(1) Introduction

(2) Feistel Network

(3) SPN

- AES

4 Modes of Operation

Recommendation of Modes of Operation

- A NIST standard FIPS 800-38A (since 2001)
- This recommendation defines five confidentiality modes of operation for use with an underlying symmetric key block cipher algorithm:
- Electronic Codebook (ECB),
- Cipher Block Chaining(CBC),
- Cipher Feedback (CFB),
- Output Feedback (OFB), and
- Counter (CTR).
- Addendum to NIST Special Publication 800-38A for three variants of ciphertext stealing for CBC Mode in 2010.

Electronic Code Book (ECB) Mode

Encryption : $c_{i}=E_{K}\left(p_{i}\right)$, Decryption : $p_{i}=D_{K}\left(c_{i}\right)$

Properties of ECB

- Advantages
(1) No block synchronization between sender and receiver is required.
(1. Bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks.
(1. Block cipher operating can be parallelized for high-speed implementations.
- Disadvantages
(1) Identical plaintexts result in identical ciphertexts.
(.) An attacker recognizes if the same message has been sent twice.
(1. Plaintext blocks are encrypted independently of previous blocks.
(.) An attacker may reorder ciphertext blocks which results in valid plaintext.

Properties of ECB

- Advantages
(1) No block synchronization between sender and receiver is required.
(1. Bit errors caused by noisy channels only affect the corresponding block but not succeeding blocks.
(1. Block cipher operating can be parallelized for high-speed implementations.
- Disadvantages
(1) Identical plaintexts result in identical ciphertexts.
(.) An attacker recognizes if the same message has been sent twice.
(1. Plaintext blocks are encrypted independently of previous blocks.
(.) An attacker may reorder ciphertext blocks which results in valid plaintext.

ECB is insecure and you should not use it!

Cipher Block Chaining (CBC)Mode

Encryption : $c_{i}=E_{K}\left(p_{i} \oplus c_{i-1}\right)$, Decryption : $p_{i}=D_{K}\left(c_{i}\right) \oplus c_{i-}$

Properties of CBC

- The encryption of all blocks are chained together.
- The encryption is randomized by using an initialization vector $I \mathcal{V}$.
- A single bit error in ciphertext block c_{i} affects decipherment of blocks c_{i} and c_{i+1}.
- Block p_{i}^{\prime} recovered from c_{i} is typically totally random, while the recovered plaintext p_{i+1}^{\prime} has bit errors precisely where c_{i} did.
- Decryption can be much faster than encryption due to parallelism.
- Padding oracle attack is possible in CBC mode.

Output FeedBack (OFB) Mode

Encryption : $c_{i}=p_{i} \oplus E_{K}\left(k_{i-1}\right)$, Decryption : $p_{i}=c_{i} \oplus E_{K}\left(k_{i-1}\right)$

Properties of OFB

- It is used to build a synchronous stream cipher from a block cipher.
- The key stream is not generated bitwise but instead in a blockwise fashion.
- One or more bit errors in any ciphertext block c_{i} affects the decipherment of only that block.
- The $\mathcal{I V}$, which need not be secret, must be changed if an OFB key K is re-used.

Cipher FeedBack (CFB) Mode

Encryption : $c_{i}=p_{i} \oplus E_{K}\left(c_{i-1}\right)$, Decryption : $p_{i}=c_{i} \oplus E_{K}\left(c_{i-1}\right)$ 的配

Properties of CFB

- Since the encryption function E_{K} is used for both CFB encryption and decryption, the CFB mode must not be used if the block cipher E is a public-key algorithm.
- The CFB mode may be modified
- to allow processing of plaintext blocks whose size is less than the size of the feedback variable.
- It can be used in situations where short plaintext blocks are to be encrypted.

CounTeR (CTR) Mode

Encryption : $c_{i}=p_{i} \oplus E_{K}($ Nonce $\|$ CTR $)$

Decryption : $p_{i}=c_{i} \oplus E_{k}($ Nonce $\| C T R)$

Properties of CTR

- It uses a block cipher as a stream cipher
- The key stream is computed in a blockwise fashion
- Unlike CFB and OFB modes, the CTR mode can be parallelized desirable for high-speed implementations, e.g., in network routers

Galois Counter Mode (GCM)

- AES-GCM Authenticated Encryption (proposed by D. McGrew \& J. Viega)
- Designed for high performance (Mainly with a HW viewpoint)
- This is used for authenticated encryption with associated data (AEAD), and its specialization, GMAC, for generating a MAC on data that is not encrypted.
- A NIST standard FIPS 800-38D (since 2007)
- Included in the NSA Suite B Cryptography, IPsec (RFC 4106), IEEE P1619, TLS 1.2, TLS1.3

Galois Counter Mode (GCM)

- AES-GCM Authenticated Encryption (proposed by D. McGrew \& J. Viega)
- Designed for high performance (Mainly with a HW viewpoint)
- This is used for authenticated encryption with associated data (AEAD), and its specialization, GMAC, for generating a MAC on data that is not encrypted.
- A NIST standard FIPS 800-38D (since 2007)
- Included in the NSA Suite B Cryptography, IPsec (RFC 4106), IEEE P1619, TLS 1.2, TLS1. 3
- How it works:

Galois Counter Mode (GCM)

- AES-GCM Authenticated Encryption (proposed by D. McGrew \& J. Viega)
- Designed for high performance (Mainly with a HW viewpoint)
- This is used for authenticated encryption with associated data (AEAD), and its specialization, GMAC, for generating a MAC on data that is not encrypted.
- A NIST standard FIPS 800-38D (since 2007)
- Included in the NSA Suite B Cryptography, IPsec (RFC 4106), IEEE P1619, TLS 1.2, TLS1. 3
- How it works:
- Encryption is done with AES in CTR mode
- Authentication tag computations: "Galois Hash"
- A Carter-Wegman-Shoup universal hash construction: polynomial evaluation over a binary field
- Uses $G F\left(2^{128}\right)$ defined by the "lowest" irreducible polynomial

$$
g(x)=x^{128}+x^{7}+x^{2}+x+1
$$

Galois Counter Mode (GCM)

- AES-GCM Authenticated Encryption (proposed by D. McGrew \& J. Viega)
- Designed for high performance (Mainly with a HW viewpoint)
- This is used for authenticated encryption with associated data (AEAD), and its specialization, GMAC, for generating a MAC on data that is not encrypted.
- A NIST standard FIPS 800-38D (since 2007)
- Included in the NSA Suite B Cryptography, IPsec (RFC 4106), IEEE P1619, TLS 1.2, TLS1. 3
- How it works:
- Encryption is done with AES in CTR mode
- Authentication tag computations : "Galois Hash"
- A Carter-Wegman-Shoup universal hash construction: polynomial evaluation over a binary field
- Uses $G F\left(2^{128}\right)$ defined by the "lowest" irreducible polynomial

$$
g(x)=x^{128}+x^{7}+x^{2}+x+1
$$

- Computations based on $G F\left(2^{128}\right)$ arithmetic三

Galois Counter Mode (GCM) Encryption

mult $_{H}$ denotes multiplication in $G F\left(2^{128}\right)$ by the hash key $H=E_{K}\left(00_{\square}^{128}\right)$

GCM Decryption

XTS-AES Mode

- NIST approved XTS-AES algorithm a mode of operation of the AES algorithm published in 2010 (Std. IEEE 1619-2007).
- XTS stands for the XEX Tweakable Block Cipher with Ciphertext Stealing
- It was designed for the cryptographic protection of data on storage devices (data at rest).
- It has received widespread industry support.
- It is based on the concept of tweakable block cipher.
- The form of this concept used in XTS-AES was first described by Phillip Rogaway in 2004.

Tweakable Block Cipher

Tweakable Block Cipher

William Stallings,
Cryptography and Network Security: Principles and Practice, Pearson Education Canada 2020.

XTS-AES Mode

Encryption

 를

XTS-AES Mode

Decryption

 틀

The End

Thanks a lot for your attention!

[^0]: ${ }^{1}$ S. Even, Y. Mansour, A Construction of a Cipher From a Single Pseudo-random Permutation, Asiacrypt '91, Springer-Verlag 1992.

