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Disclaimers

All the pictures used in this presentation are taken from freely available
websites.

If there is a reference on a slide all of the information on that slide is
attributable to that source whether quotation marks are used or not.

Any mention of commercial products or reference to commercial
organizations is for information only; it does not imply recommendation
or endorsement nor does it imply that the products mentioned are
necessarily the best available for the purpose.
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Introduction to Public Key Cryptography

Outline

0 Introduction to Public Key Cryptography
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A Generic View of Public Key Crypto

public key private key

plaintext——— encrypt \/\/\/ decrypt —— plaintext

ciphertext
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A Generic View of Public Key Crypto

public key private key

plaintext——— encrypt \/W decrypt

——— plaintext

ciphertext
Advantages over symmetric-key
@ Better key distribution and management
@ No danger that public key compromised

@ New protocols
@ Digital Signature

© Long-term encryption
Only disadvantage:
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A Generic View of Public Key Crypto

public key private key

plaintext——— encrypt \/\/\/ decrypt —— plaintext

ciphertext

Advantages over symmetric-key

@ Better key distribution and management
@ No danger that public key compromised
@ New protocols
@ Digital Signature
© Long-term encryption

Only disadvantage: much more slower than symmetric key crypto
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Introduction to Public Key Cryptography

Definition

PKC
A public key cryptosystem is a pair of families {E; : k € K} and {D; : k € K} of
algorithms representing invertible transformations,

Ek:M_)C&Dk:C—)M

on a finite message space M and ciphertext space C, such that

@ for every k € K, D, is the inverse of E; and vice versa,

@ forevery ke K, M e M and C € C, the algorithms E; and D, are easy to
compute.

@ for every k € K, it is feasible to compute inverse pairs E; and D; from k,




Introduction to Public Key Cryptography

Definition

PKC

A public key cryptosystem is a pair of families {E; : k € K} and {D; : k € K} of
algorithms representing invertible transformations,

Ek:M_)C&Dk:C—)M

on a finite message space M and ciphertext space C, such that

for every k € K, D, is the inverse of E; and vice versa,

for every k e K, M € M and C € C, the algorithms E; and D, are easy to
compute.

for every k € K, it is feasible to compute inverse pairs E; and Dy from k,

66 ee

for almost every k € K, each easily computed algorithm equivalent to D;
is computationally infeasible to derive from E;, without knowing «.
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Introduction to Public Key Cryptography

Definition

Computationally Infeasible

A task is computationally infeasible if either the time taken or the
memory required for carrying out the task is finite but impossibly
large.




Definition

Computationally Infeasible

A task is computationally infeasible if either the time taken or the

memory required for carrying out the task is finite but impossibly
large.

Any computational task which takes > 2!'? bit operations, we say,
it is computationally infeasible in present day scenario.

i
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Introduction to Public Key Cryptography

Step 1: Alice gets Bob's public key

v

Bob Step 3: Alice sends the message to Bob Alice
Step 4: Bob decrypts Step 2: Alice encrypts
the message with his the message with Bob's

private key @m public key @;-

Even if Eve intercepts the
message, she does not
have Bob's private key
and cannot decrypt

the message
Eve
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Digital Signature

Signing a Message M
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Digital Signature

Signing a Message M

Hash F ion h .
Wessage ] """, [bigest i)
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Digital Signature

Signing a Message M

Hash Function & . Private K :
Message M| "™, [Digest | "2,
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Requirements to Design a PKC

Outline

© Requirements to Design a PKC

i
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Requirements to Design a PKC

One-way Function

easy

Definition
Easy: 3 a polynomial-time algorithm that, on input m € A outputs ¢ = f(m).

Definition

Hard: Every probabilistic polynomial-time algorithm trying, on input ¢(= f(m)) to find
an inverse of c € B under f, may succeed only with negligible probability.




Requirements to Design a PKC

One-way Function

easy

Definition
Easy: 3 a polynomial-time algorithm that, on input m € A outputs ¢ = f(m).

Definition

Hard: Every probabilistic polynomial-time algorithm trying, on input ¢(= f(m)) to find
an inverse of c € B under f, may succeed only with negligible probability.
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Requirements to Design a PKC

Examples of One-way Function
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Requirements to Design a PKC

Examples of One-way Function

@ Cryptographic hash functions, viz., SHA-2 and SHA-3 (Keccak)
family.
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Requirements to Design a PKC

Examples of One-way Function

@ Cryptographic hash functions, viz., SHA-2 and SHA-3 (Keccak)
family.

@ The function
fiZ, > Zp,

24 24
a2 T g P e + a3 + agx + as,

where p = 2% — 59 and each a; (€ Z,) is 19-digit number for
1 <i<5s.
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Requirements to Design a PKC

Trapdoor One-way Function
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Trapdoor One-way Function

Trapdoor One-way Function

easy
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Trapdoor One-way Function
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Requirements to Design a PKC

Trapdoor One-way Function

Trapdoor One-way Function

easy with trapdoor
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Requirements to Design a PKC

Trapdoor One-way Function

Definition

A trapdoor one-way function is a one-way function f : M — C,
satisfying the additional property that 1 some additional information or
trapdoor that makes it easy for a given ¢ € f(M) to find out

m e M f(m) = ¢, but without the trapdoor this task becomes hard.
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Requirements to Design a PKC

Examples Trapdoor One-way Function

€1 ,62

@ Integer Factorization: Given n € Z*, find n = p{'p; ...p,i" where
the p; are pairwise distinct primes and eache¢; >0for1 <i<k. —
hard problem.
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Requirements to Design a PKC

Examples Trapdoor One-way Function

€1 ,62

@ Integer Factorization: Given n € Z*, find n = p{'p; ...p,i" where
the p; are pairwise distinct primes and eache¢; >0for1 <i<k. —
hard problem.

def | Input : n>1
Iep = { Output : p{'pS...pY

@ Consider the number 37015031
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Requirements to Design a PKC

Examples Trapdoor One-way Function

€1 ,62

@ Integer Factorization: Given n € Z*, find n = p{'p; ...p,i" where
the p; are pairwise distinct primes and eache¢; >0for1 <i<k. —
hard problem.

def | Input : n>1
Iep = { Output : p{'pS...pY

@ Consider the number 37015031= 6079 x 6089
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Requirements to Design a PKC

Examples Trapdoor One-way Function

€1 ,62

@ Integer Factorization: Given n € Z*, find n = p{'p; ...p,i" where
the p; are pairwise distinct primes and eache¢; >0for1 <i<k. —
hard problem.

def | Input : n>1
Iep = { Output : p{'pS...pY

@ Consider the number 37015031= 6079 x 6089

e Consider the number 96679789
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Requirements to Design a PKC

Examples Trapdoor One-way Function

€1 ,62

@ Integer Factorization: Given n € Z*, find n = p{'p; ...p,i" where
the p; are pairwise distinct primes and eache¢; >0for1 <i<k. —
hard problem.

def | Input : n>1
Iep = { Output : p{'pS...pY

@ Consider the number 37015031= 6079 x 6089

o Consider the number 96679789= 9743 x 9923
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Requirements to Design a PKC

Examples Trapdoor One-way Function

@ Discrete Logarithm Problem: Given an abelian group (G, .) and
g € G of order n. Given h € G such that z = g* find x
(DLP(g,h) — x). — hard problem.
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Requirements to Design a PKC

Examples Trapdoor One-way Function

@ Discrete Logarithm Problem: Given an abelian group (G, .) and
g € G of order n. Given h € G such that z = g* find x
(DLP(g,h) — x). — hard problem.
The DLP over the multiplicative group
Z;, ={a : 1 <a<n,ged(a,n) = 1}. DLP may be defined as follows:
def | Input : x,yeZ,&n
bLP = { Output : ks/ty=x* modn
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Requirements to Design a PKC

Examples Trapdoor One-way Function

@ Discrete Logarithm Problem: Given an abelian group (G, .) and
g € G of order n. Given h € G such that z = g* find x
(DLP(g,h) — x). — hard problem.
The DLP over the multiplicative group
Z;, ={a : 1 <a<n,ged(a,n) = 1}. DLP may be defined as follows:
def | Input : x,yeZ,&n
bLP = { Output : ks/ty=x* modn

@ Let p =97. Then Zg, is a cyclic group of order n = 96.

S is a generator of Zg..
Now, 5 = 35 mod 97, find the value of x.
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Requirements to Design a PKC

Examples Trapdoor One-way Function

@ Discrete Logarithm Problem: Given an abelian group (G, .) and
g € G of order n. Given h € G such that z = g* find x
(DLP(g,h) — x). — hard problem.
The DLP over the multiplicative group
Z;, ={a : 1 <a<n,ged(a,n) = 1}. DLP may be defined as follows:
def | Input : x,yeZ,&n
bLP = { Output : ks/ty=x* modn

@ Let p =97. Then Zg, is a cyclic group of order n = 96.

S is a generator of Zg..
Now, 5 = 35 mod 97, find the value of x.
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Requirements to Design a PKC

Example Trapdoor One-way Function

@ Computational Diffie-Hellman Problem: Givena =g*and b = ¢’
find ¢ = g©. (CDH(g,a,b) — ¢ ). — hard problem.
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Requirements to Design a PKC

Example Trapdoor One-way Function

@ Computational Diffie-Hellman Problem: Givena =g*and b = ¢’
find ¢ = g©. (CDH(g,a,b) — ¢ ). — hard problem.

@ Elliptic Curve Discrete Logarithm Problem (ECDLP): E
denotes the collections of points on a elliptic curve and P € E. Let
S be the cyclic subgroup of E generated by P. Given Q € S, find
an integer x such that Q = x.P. — hard problem.
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Origin of PKC

Outline

© Origin of PKC
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Diffie Hellman Key Exchange Protocol
DH Key Exchange
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Diffie Hellman Key Exchange Protocol
DH Key Exchange

Both parties know p and g

Alice Bob
1. Alice generates a 1. Bob generates b
2. Alice’s public value is 2. Bob's public value is
g?mod p & b g® mod p
3. Alice computes g? = : 3. Bob computes g =
(g®)2mod p Since gab = gba they now have a (g?)P mod p

shared secret key usually called
k (K= gﬂb - gbﬂ)

=

Z = )
i
Dhananjoy Dey (Indian Institute of Informa Public Key Cryptography January 3, 2024 19/109




Diffie Hellman Key Exchange Protocol
DH Key Exchange

@ kis the shared secret key.
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Diffie Hellman Key Exchange Protocol
DH Key Exchange

@ kis the shared secret key.
@ Knowing g, g“ & g”, itis hard to find g“*.

@ Idea of this protocol: The enciphering key can be made public
since it is computationally infeasible to obtain the deciphering key
from enciphering key.

@ This protocol was (supposed to be) the door-opener to PKC.
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Diffie Hellman Key Exchange Protocol
DH Key Exchange

@ kis the shared secret key.
@ Knowing g, g“ & g”, itis hard to find g“*.
@ Idea of this protocol: The enciphering key can be made public

since it is computationally infeasible to obtain the deciphering key
from enciphering key.

@ This protocol was (supposed to be) the door-opener to PKC.

@ PKCS #3 (Version 1.4): Diffie-Hellman Key-Agreement Standard,
An RSA Laboratories Technical Note — Revised November 1,
1993.

1AL
JHE
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Origin of PKC Diffie Hellman Key Exchange Protocol

Discrete Logarithm mod 23 to the Base 5
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Origin of PKC Diffie Hellman Key Exchange Protocol

Discrete Logarithm mod 23 to the Base 5

T T T T T
012345678 910111213141516171819202122
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Origin of PKC Nonsecret Encryption

@ Clifford Cocks, Malcolm Williamson & James Ellis developed
Nonsecret Encryption between 1969 and 1974.

@ All were at GCHQ, so this stayed secret until 1997.
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Nonsecret Encryption

Key Generation

@ Select 2 large distinct primes p & ¢ such that p 1 (¢ — 1) and
gtp-1.

Public key: n = pq.

© Find numbers r & s, s/t pr=1 mod (g—1)and g.s =1
mod (p — 1).

© Findu&v,sftup=1 modgandv.g=1 mod p.
Private key: (p,q,r, s, u,v).
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Origin of PKC Nonsecret Encryption

Nonsecret Encryption

Encryption

C=M" modn forO< M <n.

Decryption

Q@ a=C° modpandb=C" mod q.
Q@ M=aqv+bpu mod n.

.\‘

S

Zai—
|
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Outline

O rxc
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PKC RSA

RSA Key Generation

@ Generate two large distinct random primes p & g.
@ Compute n = pg and ¢(n) = (p— 1)(g — 1).

@ Select a random integer e, 1 < e < ¢(n) s/t ged(e, p(n)) = 1.
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PKC RSA

RSA Key Generation

@ Generate two large distinct random primes p & g.
@ Compute n = pg and ¢(n) = (p— 1)(g — 1).
@ Select a random integer e, 1 < e < ¢(n) s/t ged(e, p(n)) = 1.

@ Compute the unique integer d, 1 <d < ¢(n) s/t

ed=1 mod ¢(n).

Public key is (n, e); Private key is (p, g, d).
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PKC RSA

RSA Encryption/Decryption

Encryption:

c=m° mod n,

Plaintext m and ciphertext ¢ € Z,.

Decryption:

m =c¢* mod n.
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https://www.youtube.com/watch?v=b57zGAkNKIc

PKC RSA

RSA Encryption/Decryption

Encryption:

c=m° mod n,

Plaintext m and ciphertext ¢ € Z,.

Decryption:

m =c? mod n.

PKCS #1 v2.2: RSA Cryptography Standard, RSA Laboratories — é!l. 'er‘
October 27, 2012.
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https://www.youtube.com/watch?v=b57zGAkNKIc

PKC RSA

RSA Validation
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PKC RSA

SBI Public Key Information

Public Key Info

Algorithm RSA
Key Size 2048

Exponent 65537
AB:55:7F:B2:9C:23:FC:79:F8:9D:00:F6:75:4E:CE:3A: 26:00:B8: 37:EA:S8E:6E:
D6:18:8AFC:F6:CA:7C:6F:4B:45:4D:98:DE:4F:3D:A3:78:5E:0C:4A:1A:81:8D:
6F:C3:BB:4C:38:6E:04:0B:1F:BB:CB:50:8B:42:E9:E2:17:65:E2: CO:DO:CA:F4:
E5:CE:0AC9:47:53:232:15:69:FG:C4:EC:BO:E0:BO:FC:CB:BA:DE:DF:BE:ED:2
B:44:3D:F6:2B:B3:0A:CA:B8:FC:D1:5F:84:2C:34:1E:15:52:76.4E:90:FA:85:7
0:BB:05:C3:02:03:17:74:B3:80:A1:59:1F:19:7B:3A:2B:C3:D5:59:CF:BA:5D:B
E:DF:3B:3A:8E:52:C1:D3:A3:8C:06:D2:2A:98: 2F:4D:82: 7TF:28:F1:B1:D 3:71:7
E:CF:4C:B1:26:F4:6F:EA:09:F9:7F:5A:D6:15:46:5C:92:50:D4:F4:F3:CA:60:2
5:4D:9A:66:91:1D:EA:74:D4:B1:71:09:30:15:4C:BB:B6:CD:C6:18:82:F8:B7:4
8:97:AF:2F:22:115:94:FE:EB:E7:DE:EF:CA:A3:6E:CC:26:69:D5:92:5B:68:89:5
6:2B:B3:72:60:62:49:8B:C5:59:45:43:C1:F4:7E:8F:2B:C4:DD:C1:BB:39:D4:B

C:6C:51:63 —
i
sl
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Strong Prime Number

A prime p is called a strong prime if
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Strong Prime Number

A prime p is called a strong prime if

@ p -1 has a large prime factor, say r,

@ p +1 has a large prime factor, and

@ r -1 has alarge prime factor.
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Definition

Forn > 1, let ¢(n) denote the number of integers in the interval [1, n]
which are relatively prime to n. The function ¢ is called the Euler phi
function.
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PKC RSA

Forn > 1, let ¢(n) denote the number of integers in the interval [1, n]

which are relatively prime to n. The function ¢ is called the Euler phi
function.

v

Properties of Euler phi function

Q Ifpisaprime, then¢(p)=p—1.

4
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PKC RSA

Forn > 1, let ¢(n) denote the number of integers in the interval [1, n]

which are relatively prime to n. The function ¢ is called the Euler phi
function.

v

Properties of Euler phi function

Q Ifpisaprime, then¢(p)=p—1.

@ The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then

¢(mn) = p(m)p(n).

4
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PKC RSA

Forn > 1, let ¢(n) denote the number of integers in the interval [1, n]

which are relatively prime to n. The function ¢ is called the Euler phi
function.

v

Properties of Euler phi function

Q Ifpisaprime, then¢(p)=p—1.

@ The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then

¢(mn) = p(m)p(n).

@ lfn=p{ps---p, is the prime factorization of n, then

4
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PKC RSA

Modular Arithmetic

@ The multiplicative group of Z,, is Z; = {a € Z, : gcd(a,n) = 1}.
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PKC RSA

Modular Arithmetic

@ The multiplicative group of Z,, is Z; = {a € Z, : gcd(a,n) = 1}.
@ Fermat’s theorem: If gcd(a, p) = 1, for a prime p then
aP~! = 1 mod p.

Dhananjoy Dey (Indian Institute of Informa Public Key Cryptography January 3, 2024 32/109



PKC RSA

Modular Arithmetic

@ The multiplicative group of Z,, is Z; = {a € Z, : gcd(a,n) = 1}.
@ Fermat’s theorem: If gcd(a, p) = 1, for a prime p then
aP~! = 1 mod p.

@ Let n be an odd composite integer. An integer
a, 1<a<n-1,5 d" ' #1 mod nis called a Fermat witness (to

compositeness) for n.
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PKC RSA

Modular Arithmetic

@ The multiplicative group of Z,, is Z; = {a € Z, : gcd(a,n) = 1}.
@ Fermat’s theorem: If gcd(a, p) = 1, for a prime p then
aP~! = 1 mod p.

@ Let n be an odd composite integer. An integer
a, 1<a<n-1,5 d" ' #1 mod nis called a Fermat witness (to
compositeness) for n.

@ Euler’s theorem: If a € Z;, then

a®™ = 1 mod n.
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Pseudoprime

Definition

If n is an odd composite number and b is an integer s/t gcd(n,b) = 1 and
»~' =1 mod n then n is called a pseudoprime to the base b. The
integer b is called a Fermat liar (to primality) for n.
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Pseudoprime

If n is an odd composite number and b is an integer s/t gcd(n,b) = 1 and

»~' =1 mod n then n is called a pseudoprime to the base b. The
integer b is called a Fermat liar (to primality) for n.

y

@ The number n = 91 is a pseudoprime to the base b = 3,

4
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Pseudoprime

Definition
If n is an odd composite number and b is an integer s/t gcd(n,b) = 1 and

»~' =1 mod n then n is called a pseudoprime to the base b. The
integer b is called a Fermat liar (to primality) for n.

Example

| \

@ The number n = 91 is a pseudoprime to the base b = 3,

3% =1 mod91.

4
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Pseudoprime

If n is an odd composite number and b is an integer s/t gcd(n,b) = 1 and

»~' =1 mod n then n is called a pseudoprime to the base b. The
integer b is called a Fermat liar (to primality) for n.

y

@ The number n = 91 is a pseudoprime to the base b = 3,

3% =1 mod91.

© However, 91 is not a pseudoprime to the base 2,
290 =

© The composite integer n = 341(= 11 x 31) is a pseudoprime to the
base 2, "~ 23* =1 mod 341. )
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PKC RSA

Carmichael Number

Definition

A Carmichael number is a composite integer n s/t

p"'=1 modn,

forevery b € Z;,.
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Carmichael Number

A Carmichael number is a composite integer n s/t

p"'=1 modn,

forevery b € Z;,.

y

@ =561 =3x11x 17 is a Carmichael number. This is the smallest Carmichael
number.

4
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Carmichael Number

A Carmichael number is a composite integer n s/t

p"'=1 modn,

forevery b € Z;,.

y

@ 1 =561 =3x11x17is aCarmichael number. This is the smallest Carmichael
number.

©@ The following are Carmichael numbers:

@ 1105=5x13x17
@ 1729=7x13%x19
@ 2465=5x17%x29

4
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Carmichael Number

@ A composite integer n is a Carmichael number iff the following two
conditions are satisfied:

@ nis square-free, and

@ p - 1 divides n — 1 for every prime divisor p of n.
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Carmichael Number

@ A composite integer n is a Carmichael number iff the following two
conditions are satisfied:

@ nis square-free, and

@ p - 1 divides n — 1 for every prime divisor p of n.

@ A Carmichael number must be the product of at least three distinct
primes.

@ There are an infinite number of Carmichael numbers.
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Quadratic Residue

Leta € Z;; a is said to be a quadratic residue modulo n, if
AxeZ > x> =a mod n.

If no such x exists, then a is called a quadratic nonresidue modulo n.

The set of all quadratic residues modulo n is denoted by O, and the set
of all quadratic nonresidues is denoted by Q,,.

y
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Quadratic Residue

Leta € Z;; a is said to be a quadratic residue modulo n, if
AxeZ > x> =a mod n.

If no such x exists, then a is called a quadratic nonresidue modulo n.

The set of all quadratic residues modulo n is denoted by O, and the set
of all quadratic nonresidues is denoted by Q,,.

y

@ Let p be an odd prime and let a be a generator of Z;,. Then a € Z;,
is a quadratic residue modulo p © a =o' mod p, where i is an
even integer.
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Quadratic Residue

Leta € Z;; a is said to be a quadratic residue modulo n, if
AxeZ > x> =a mod n.

If no such x exists, then a is called a quadratic nonresidue modulo n.

The set of all quadratic residues modulo n is denoted by O, and the set
of all quadratic nonresidues is denoted by Q,,.

4

@ Let p be an odd prime and let a be a generator of Z;,. Then a € Z;,
is a quadratic residue modulo p © a =o' mod p, where i is an
even integer.

1

o It follows that #0, = 2! and #0, = 3.
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Quadratic Residue

@ = 6 is a generator of Z},. The powers of a are

1
[6[10[8]9]

| 10 | 11
4 |11

i | 0
3

| [ 2|3
o mod 13 | 8

5/6 (7|89
2[12|7]|3]5
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Quadratic Residue

@ = 6 is a generator of Z},. The powers of a are
i \0\1\2\3\4\5\6\7\8\9\10\11
a mod13\1\6\10\8\9\2\12\7\3\5\ 4 \11
Hence Q13 = {1,3,4,9, 10,12} and Qi3 = {2,5,6,7,8, 11}. |
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Quadratic Residue

@ = 6 is a generator of Z},. The powers of a are

[1]2[3]4]5]|6|7]|8]
[610[8[9]2]12[7[3]

Hence Q13 ={1,3,4,9,10,12} and Q3 = {2,5,6,7,8, 11}.

| 10 | 11
4 |11

i |0 8|9
o mod 13 | 1 3|5

@ Let n = p.q be a product of two distinct odd primes. Then a € Z; is
a quadratic residue modulon © a€ Q, & a € Q,.

o It follows that #0, = Z=4"1 and #p, = 2=la-D,
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Quadratic Residue

@ = 6 is a generator of Z},. The powers of a are

[1]2[3]4]5]|6|7]|8]
[610[8[9]2]12[7[3]

Hence Q13 ={1,3,4,9,10,12} and Q3 = {2,5,6,7,8, 11}.

| 10 | 11
4 |11

i |0 8|9
o mod 13 | 1 3|5

@ Let n = p.q be a product of two distinct odd primes. Then a € Z; is
a quadratic residue modulon © a€ Q, & a € Q,.

o It follows that #0, = Z=4"1 and #p, = 2=la-D,

Let n = 21. L
Then 0, ={1,4,16} and 0> ={2,5,8,10,11,13,17, 19, 20}.
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The Legendre and Jacobi Symbols

@ Let p be an odd prime and a an integer. The Legendre symbol
(4) is defined to be

0, ifpla,
a .
(—)= 1, ifaeQ,,
Pl ifaco,
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The Legendre and Jacobi Symbols

@ Let p be an odd prime and a an integer. The Legendre symbol
(4) is defined to be

0, ifpla,
a .
(—)= 1, ifaeQ,,
Pl ifaco,

€1 ,€2

@ Letn > 3 be odd with prime factorization n = p{'p5* --- p;*. Then
the Jacobi symbol (¢) is defined to be

(B-G GG
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Properties of Legendre Symbol

Q@ (%)=a?M2 mod p. In particular, (1) = 1 and (=) = (-)*=D"2,

Hence, -1€ Q,if p=1 mod4,and -1 € Q, if p=3 mod 4.
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Properties of Legendre Symbol

Q (%) = a» D2 mod p. In particular, (%) =1and (‘71) = (-1)P-D/2,
Hence, 1€ Q,if p=1 mod 4,and -1 € Q, if p =3 mod 4.

Q@ (@) = (2) (%) Hence if a € Z3, then( 2) =1.

a-
p p p
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Properties of Legendre Symbol

Q (%) = a» D2 mod p. In particular, (%) =1and (‘71) = (-1)P-D/2,
Hence, 1€ Q,if p=1 mod 4,and -1 € Q, if p =3 mod 4.

Q@ (@) = (2) (%) Hence if a € Z3, then( 2) =1.

a-
p p p

@ Ifa=b mod p, then (g) = (f-)).
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Properties of Legendre Symbol

Q@ (%)=a?M2 mod p. In particular, (1) = 1 and (=) = (-)*=D"2,

Hence, -1€ Q,if p=1 mod4,and -1 € Q, if p=3 mod 4.
Q@ (‘;—b) = (%) (%) Hence if a € Z, then (%) = 1.
@ Ifa=b mod p, then (g) = (f-)).

@ Law of quadratic reciprocity: If g is an odd prime distinct from p,

then
(E) _ (Z)(_l)w—l)(q—l)/{
q P
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Fermat Test for Primality — Probabilistic Algorithm

Fermat Test for Primality

Input: n
Output: YES if n is composite, NO otherwise.
Choose arandom b, 0 <b <n
if gcd(b,n) > 1 then
| return YES
end

else ;
if ! £1 mod n then
return YES

end

else ;
return NO

v
e == 1§
]1]1B
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The Euler Test — Probabilistic Algorithm

@ If nis an odd prime, we know that an integer can have at most two
square roots, mod n. In particular, the only square roots of 1
mod n are +1.

@ Ifa#0 mod n, a” V2 is a square root of "' =1 mod n, so
a™ D2 =41 mod n.
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The Euler Test — Probabilistic Algorithm

@ If nis an odd prime, we know that an integer can have at most two
square roots, mod n. In particular, the only square roots of 1
mod n are +1.

@ Ifa#0 mod n, a” V2 is a square root of "' =1 mod n, so
a™ D2 =41 mod n.

@ If a® V2 % +1 mod n for some a with a # 0 mod n, then n is
composite.
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The Euler Test — Probabilistic Algorithm

@ For a randomly chosen a with @ # 0 mod n, compute a"~1/?
mod n.
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The Euler Test — Probabilistic Algorithm

@ For a randomly chosen a with @ # 0 mod n, compute a"~1/?
mod n.

@ I1fa™ Y2 =+1 mod n, declare n a probable prime, and optionally
repeat the test a few more times.
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The Euler Test — Probabilistic Algorithm

@ For a randomly chosen a with @ # 0 mod n, compute a"~1/?
mod n.

@ I1fa™ Y2 =+1 mod n, declare n a probable prime, and optionally
repeat the test a few more times.

Ifn is large and chosen at random, the probability that n is prime is
very close to 1.

@ Ifa™ Y2 % +1 mod n, declare n composite.

This is always correct.
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The Euler Test — Probabilistic Algorithm

@ For a randomly chosen a with @ # 0 mod n, compute a"~1/2
mod 7.

@ I1fa™ Y2 =+1 mod n, declare n a probable prime, and optionally
repeat the test a few more times.

Ifn is large and chosen at random, the probability that n is prime is
very close to 1.

@ Ifa™ Y2 % +1 mod n, declare n composite.

This is always correct.

The Euler test is more powerful than the Fermat test.
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The Euler Test — Probabilistic Algorithm

The Euler test is more powerful than the Fermat test.

@ If the Fermat test finds that n is composite, so does the Euler test.

@ If nis an odd composite integer (other than a prime power), 1 has
at least 4 square roots mod n.

So we can have a”~V/2 = 8 mod n, where 8 # +1 is a square root
of 1.
Then a"! =1 mod n. In this situation, the Fermat Test

(incorrectly) declares n a probable prime, but the Euler test
(correctly) declares n composite.
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Miller-Rabin Test — Probabilistic Algorithm

@ The Euler test improves upon the Fermat test by taking advantage
of the fact, if 1 has a square root other than +1 mod n, then n
must be composite.

@ If a2 = +1 mod n, where gcd(a,n) = 1, then n must be
composite for one of two reasons:

@ Ifa' #1 mod n, then n must be composite by Fermat's Little
Theorem

@ Ifa' =1 mod n, then n must be composite because a”~"/? is a
square root of 1 mod n different from +1.
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Miller-Rabin Test — Probabilistic Algorithm

@ The Euler test improves upon the Fermat test by taking advantage
of the fact, if 1 has a square root other than +1 mod n, then n
must be composite.

@ If a2 = +1 mod n, where gcd(a,n) = 1, then n must be
composite for one of two reasons:

@ Ifa' #1 mod n, then n must be composite by Fermat's Little
Theorem

@ Ifa' =1 mod n, then n must be composite because a”~"/? is a
square root of 1 mod n different from +1.

@ The limitation of the Euler test is that is does not go to any special

effort to find square roots of 1, different from +1. The Miller-Rg
test does this. i
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Miller-Rabin Test — Probabilistic Algorithm

Miller-Rabin Test

Input: an odd integer n > 3 and security parameter ¢ > 1.
Output: an answer “prime" or “composite” to the question: “Is n prime?"
Write n — 1 = 2*.r s/t r is odd.
fori=1tordo
Choose arandom integera s/t2 <a<n-2.
Compute y =a” mod n
ify+1&y#n—-1then
je 1
while j<s-1&y#n-1do
Compute y « y> mod n.
If y = 1 then return(“composite").
jej+ 1
end
If y # n— 1 then return (“‘composite").
end

end
Return(“prime").

v
P
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Deterministic Polynomial Time Algorithm

Input: a positive integer n > 1
Output: » is Prime or Composite in deterministic polynomial-time
If n = a” with a € N & b > 1, then output COMPOSITE.

v
I —tl.
ey
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Deterministic Polynomial Time Algorithm

Input: a positive integer n > 1

Output: » is Prime or Composite in deterministic polynomial-time
If n = a” with a € N & b > 1, then output COMPOSITE.

Find the smallest r such that ord,(n) > 4(logn)?.

If 1 < gcd(a,n) < nfor some a < r, then output COMPOSITE.

v
I —tl.
ey
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Deterministic Polynomial Time Algorithm

Input: a positive integer n > 1

Output: » is Prime or Composite in deterministic polynomial-time
If n = a® with a € N & b > 1, then output COMPOSITE.

Find the smallest r such that ord,(n) > 4(logn)?.

If 1 < gcd(a,n) < nfor some a < r, then output COMPOSITE.

If n < r, then output PRIME.

v
I —tl.
ey
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Deterministic Polynomial Time Algorithm

Input: a positive integer n > 1
Output: » is Prime or Composite in deterministic polynomial-time
If n = a® with a € N & b > 1, then output COMPOSITE.
Find the smallest r such that ord,(n) > 4(logn)?.
If 1 < gcd(a,n) < nfor some a < r, then output COMPOSITE.
If n < r, then output PRIME.
fora=1to[2+/¢(r)logn| do
if(x—a)"# (" —a) mod (x" —1,n),
then output COMPOSITE.
end

Return(“PRIME").

- "
BTN i I'.:r'.
T
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PKC RSA

RSA Example

@ Suppose A wants to send the following message to B
RSAISTHEKEYTOPUBLICKEYCRYPTOGRAPHY

@ B chooses hisn =737 = 11 x 67. Then ¢(n) = 660. Suppose he
picks e =7, = d = 283.
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PKC RSA

RSA Example

@ Suppose A wants to send the following message to B
RSAISTHEKEYTOPUBLICKEYCRYPTOGRAPHY

@ B chooses hisn =737 = 11 x 67. Then ¢(n) = 660. Suppose he
picks e =7, = d = 283.
@ - 26*<n<26°
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PKC RSA

RSA Example

@ Suppose A wants to send the following message to B
RSAISTHEKEYTOPUBLICKEYCRYPTOGRAPHY

@ B chooses hisn =737 = 11 x 67. Then ¢(n) = 660. Suppose he
picks e =7, = d = 283.

@ - 26> <n <26 .. the block size of the plaintext = 2.

m; = ‘RS’ =17 x 26+ 18 = 460

c1 =460" =697 mod 737 = 1.26° + 0.26 + 21 = BAV
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RSA Example

RS | Al | ST | HE | KE | YT | OP | UB
my, || 460 | 8 | 487 | 186 | 264 | 643 | 379 | 521
cp || 697 | 387 | 229 | 340 | 165 | 223 | 586 | 5

LI |CK|EY | CR|YP | TO | GR | AP | HY
294 | 62 | 128 | 69 | 639 | 508 | 173 | 15 | 206
189 | 600 | 325 | 262 | 100 | 689 | 354 | 665 | 673
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RSA Example

@ Suppose A wants to send the following message to B
power
@ B chooses his n = 1943 =29 x 67. Then ¢(n) = 1848. Suppose he
picks e = 701, = d = 29.
@ - 26> <n <26 . the block size of the plaintext = 2.

Oml ‘po’ =15x26+ 14 =404, mp = ‘we’ =22xX26+4 =576, m3 =
=17%x26+0 =442,

@ ¢ =4047°" = 1419 mod 1943 = 2.26% +2.26 + 15 = ccp.
@ ||y, cp =344 =13.26 + 6 = ang & c3 = 210 = 8.26 + 2 = aic.
@ The cipher text is

ccpangaic
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Security of RSA

If we know n and ¢(n), we can find p & g.




Security of RSA

If we know n and ¢(n), we can find p & g.

We have
pn)=pg—p—-q+l=n—(p+q +1.

Since we know n, we can find p + ¢ from the above equation.
Since we know pg = n and p + ¢, we can find p & ¢ by factoring
the quadratic equation

x> = (p+q)x+ pg=0.
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Security of RSA

@ Security of RSA relies on difficulty of finding d given n & e.
@ Breaking RSA is no harder than Factoring.

@ It is not secure against chosen ciphertext attacks (CCA).
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Security of RSA

@ Security of RSA relies on difficulty of finding d given n & e.
@ Breaking RSA is no harder than Factoring.

@ It is not secure against chosen ciphertext attacks (CCA).
e Input challenge ciphertext ¢ = m mod N.
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PKC RSA

Security of RSA

@ Security of RSA relies on difficulty of finding d given n & e.
@ Breaking RSA is no harder than Factoring.

@ It is not secure against chosen ciphertext attacks (CCA).

e Input challenge ciphertext ¢ = m mod N.

@ Submit ciphertext ¢’ = r’c mod N for decryption.
o Receive message m’ = rm.

e Original message is ¥~'m’ mod N = m.

@ RSA is secure against chosen plaintext attack (CPA).
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IND-CCA

Security notion for encryption.
@ From a ciphertext ¢, an attacker should not be able to derive any
information from the corresponding plaintext m.

@ Even if the attacker can obtain the decryption of any ciphertext, ¢
excepted.

@ This is called indistinguishability against a chosen ciphertext
attack (IND-CCA).
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SBI Public Key Information

Public Key Info

Algorithm RSA
Key Size 2048

Exponent 65537
AB:55:7F:B2:9C:23:FC:79:F8:9D:00:F6:75:4E:CE:3A: 26:00:B8: 37:EA:S8E:6E:
D6:18:8AFC:F6:CA:7C:6F:4B:45:4D:98:DE:4F:3D:A3:78:5E:0C:4A:1A:81:8D:
6F:C3:BB:4C:38:6E:04:0B:1F:BB:CB:50:8B:42:E9:E2:17:65:E2: CO:DO:CA:F4:
E5:CE:0AC9:47:53:232:15:69:FG:C4:EC:BO:E0:BO:FC:CB:BA:DE:DF:BE:ED:2
B:44:3D:F6:2B:B3:0A:CA:B8:FC:D1:5F:84:2C:34:1E:15:52:76.4E:90:FA:85:7
0:BB:05:C3:02:03:17:74:B3:80:A1:59:1F:19:7B:3A:2B:C3:D5:59:CF:BA:5D:B
E:DF:3B:3A:8E:52:C1:D3:A3:8C:06:D2:2A:98: 2F:4D:82: 7TF:28:F1:B1:D 3:71:7
E:CF:4C:B1:26:F4:6F:EA:09:F9:7F:5A:D6:15:46:5C:92:50:D4:F4:F3:CA:60:2
5:4D:9A:66:91:1D:EA:74:D4:B1:71:09:30:15:4C:BB:B6:CD:C6:18:82:F8:B7:4
8:97:AF:2F:22:115:94:FE:EB:E7:DE:EF:CA:A3:6E:CC:26:69:D5:92:5B:68:89:5
6:2B:B3:72:60:62:49:8B:C5:59:45:43:C1:F4:7E:8F:2B:C4:DD:C1:BB:39:D4:B

C:6C:51:63 —
i
sl
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https://factorable.net/weakkeys12.extended.pdf

PKC RSA

LinkedIn Public Key Information

Public Key Info

Algorithm RSA
Key Size 2048
Exponent 65537

D4:8A:8B:DF:28:F5:5C:7B:B6:79:74:E5:F4:4A:5B:E7:38:94:69:B7:BA:19:4D:
A7:A9:73:64:6F:DD:BB:4C:99:5A:91:E8:F5:C8:D7:B1:1E:5B:3E: 3E:AE:77:6B:

A3E3:DF:D3:29:38:5%°EB:66:59:6D:37:FF:75:20:4E:66:1B:D0:C8:73:9E:AD:
38:6E:16:98:BD:DB:CC:D8:95:CF:87:AE:5E:42:10:FB:10:34:BF:E8:1F:5A:0A:

4B:A3:28:25:55:3F:FD:15:D0:3D:25:EF:09:6C:E4:CO:E4:9F:E7:4E:28:C6:D0:
63:2C:07:4C:CE:4F:4E:EE:B1:70:66:07:96:40:E3:51:1B:23:91:84:12: AE:AB'F

A:2D:BO:3EME:C1:AC:BF:80:90:31:81:88:C7:5C:66:0E:34:5F:62:B5:CF:03:8

E:C8:74:82:77:01:A1:EB:A1:D3:1D:4B:43:6A:87:F2:E2:22:48:58:B2:3A:88:CT:
F8:DC:9D:70:D9:BE:83:E1:B2:EQBA:AC:C5:EF:BO:CB:76:9D:6E10F7:CO:80:
BE:B7:C7:30:5B:85:5F:D9:6C:26:B1:B9:59:24:17:C5:F6:01:CD:67:FA:21:EB:B
B:1D:24:44:20:6B:09:CA'8F:5B10:AF:76:B0:AB:33:9F:28:B2:B1:CB:FC:2F:E

57

Modulus

!
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[IITL Public Key Information

Public Key Info

Algorithm RSA
Key Size 2048

Exponent 65537
BF:26:C8:BAE3:2F:68:5A:8F:C1:82:43:AC:0A:82:B5:0D:4E:04:6E:B1:85:35:
BE:14:51:AC:7A:44:4F:A5.CF.A2:3C:4C:8B:97:7E:0E:8C:4AF6:05:1F:53:5C:4
E:D1:1D:23:84:8C:8F:C7:B6:99:AA:6D:00:36:E4:FF:53:7F:EC:FF:9F:42:89:2
B:F5:EF:39:9B:7C:F3:51:75:0F:0C:B1:AA:FB:4C:59:40:06:C5:60:0F:5D:2F: A
8:47:CE:47:CF:69:73:0B:AB:71:44:51:01:6D:E1:C8:9AEF:FA:96: A4:E7:AF:5E:
1F:AB:AT:BC:26:8A: 7B AE:AQ:14: TAEC:74:7B:7B:D3:9B:61:C7:60:1F:E7:CB:7
F:E9:AB:F2:CE:6F:22:4A:42:AB:60:B5:BF:09:9D:CA:D7:6D:F2:8C:06:6E:30:
AB:F1:AB:EC:32:73:D3:E8:67:93:E3:06:C9:58:C5:99:43:8C:5E:3C:C2:7A:B:
1B:27:47:29:B7:9E:9A:DC:FB:63:6 AAEQ:A1:BC:33:BO:FE:C1112:6F:01:7 3:AT:A
B:3E:C9:92:EB:45:FE:5D:86:CA:4D:99:87:6E:75:4C:B3:CD:85:F0:AE:61:9B:B
C:C6:9E:A4:3A:D2:53:76:EE'73:D9:3A:52:0C:CD:D1:73:70:7A:DE:BC:DC:5E:

58:7D —
' g
il
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PKC RSA

Choice of Encryption Key e

@ The encryption exponent e should not be too small.
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Choice of Encryption Key e

@ The encryption exponent e should not be too small.

@ Suppose ¢ = 3 and there are 3 recipients having the same encryption exponent
3, but with different modulus n;, i=1,2,3.

@ Then, ciphertexts y; = M*> mod n; for i = 1,2,3 and send them to the recipients.
@ Assume that n; for i = 1,2, 3 are pairwise coprime.
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Choice of Encryption Key e

@ The encryption exponent e should not be too small.

@ Suppose ¢ = 3 and there are 3 recipients having the same encryption exponent
3, but with different modulus n;, i=1,2,3.

@ Then, ciphertexts y; = M*> mod n; for i = 1,2,3 and send them to the recipients.
@ Assume that »; for i = 1,2, 3 are pairwise coprime.
@ Suppose two of them, say n; & n,, are not coprime.
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PKC RSA

Choice of Encryption Key e

@ The encryption exponent e should not be too small.

@ Suppose ¢ = 3 and there are 3 recipients having the same encryption exponent
3, but with different modulus n;, i=1,2,3.

@ Then, ciphertexts y; = M*> mod n; for i = 1,2,3 and send them to the recipients.
@ Assume that n; for i = 1,2, 3 are pairwise coprime.

@ Suppose two of them, say n; & n,, are not coprime. Then, ged(n;,n,) is a
nontrivial factor of n; & n, and any adversary can factorise both of them.

@ If adversary gets hold of the messages y;, 1 <i < 3, (s)he can compute M?
mod nnyn; using Chinese remainder theorem since ged(n;, n;) = 1 fori # j.
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PKC RSA

Choice of Encryption Key e

@ The encryption exponent e should not be too small.

@ Suppose ¢ = 3 and there are 3 recipients having the same encryption exponent
3, but with different modulus n;, i=1,2,3.

@ Then, ciphertexts y; = M*> mod n; for i = 1,2,3 and send them to the recipients.
@ Assume that n; for i = 1,2, 3 are pairwise coprime.

@ Suppose two of them, say n; & n,, are not coprime. Then, ged(n;,n,) is a
nontrivial factor of n; & n, and any adversary can factorise both of them.

@ If adversary gets hold of the messages y;, 1 <i < 3, (s)he can compute M?
mod nnyn; using Chinese remainder theorem since ged(n;, n;) = 1 fori # j.

@ - m<n;, m<nmmns. S0, M> mod ninyny = M? and the adversary can find M by
taking the cube root of M*> mod n nyn;.
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PKC RSA

RSA in Practice — Optimal Asymmetric Encryption
Padding (OAEP)
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PKC RSA

Optimal Asymmetric Encryption Padding (OAEP) |

@ To encrypt a message M of k,-bit, first concatenates the message
with 041,

@ Expands the message to M||0%.
@ After that, select a random string r of length k bits.
@ Use it as the random seed for G(r) and computes

= (M|0"Y @ G(r), xo =r®H(x)

@ If x1||x, is a binary number bigger than n, Alice chooses another
random string r and computes the new values of x; & x».

@ If G(r) produces fairly random outputs x1|lx> will be less than noi&f
binary with a probability greater than 1
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PKC RSA

Optimal Asymmetric Encryption Padding (OAEP) Il

@ After getting a string r with x||x, < n, Alice then encrypts x;||x, to
get the ciphertext

EM) = (x1|lx2)=c¢ mod n
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PKC ElGamal

ElGamal PKC in Z;
This was designed by Taher EIGamal in 1985

Dhananjoy Dey (Indian Institute of Informa Public Key Cryptography January 3, 2024 60/109



PKC ElGamal

ElGamal PKC in Z,

This was designed by Taher EIGamal in 1985
Key Generation:

@ <a>=7,, P=2,&C=2,xZ,.

@ f=a‘ mod p.

@ Public: p,@,p and Private: a.
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PKC ElGamal

ElGamal PKC in Z,

This was designed by Taher ElGamal in 1985
Key Generation:

@ <a>=7,, P=2,&C=2,xZ,.

@ f=a‘ mod p.

@ Public: p,@,p and Private: a.
Encryption:

@ Selectarandomk e Z,_;.

@ Enci(x) = (y1,2)

y1 = o mod p, 2 = x.ﬁk
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PKC ElGamal

ElGamal PKC in Z,

This was designed by Taher ElGamal in 1985
Key Generation:

@ <a>=7,, P=2,&C=2,xZ,.

@ f=a‘ mod p.

@ Public: p,@,p and Private: a.
Encryption:

@ Selectarandomk e Z,_;.

@ Enci(x) = (y1,2)

y1 = o mod p, 2 = x.ﬁk mod p.

Decryption:
Deci(y1.y2) = y2.(6)"" mod p.
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PKC ElGamal

ElGamal PKC in Z,

@ Let p =29 and a =2, ais a primitive element mod 29.
@ Leta=>5,
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PKC ElGamal

ElGamal PKC in Z,

@ Let p =29 and a =2, ais a primitive element mod 29.
@ Leta=5, . =2 mod =3 mod 29.

@ Public Key: (29,2, 3) and Private Key: 5

@ Plaintext: x = 6 & random number k = 14 € Zyg
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PKC ElGamal

ElGamal PKC in Z,

@ Let p =29 and a =2, ais a primitive element mod 29.
Leta=5, -.=2> mod =3 mod 29.

Public Key: (29,2, 3) and Private Key: 5

Plaintext: x = 6 & random number k = 14 € Zg

y=2"%=28 mod?29 &y, =63"=23 mod 29

Ciphertext: (28, 23).
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PKC ElGamal

Security of ElGamal Ciphertexts
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PKC ElGamal

Security of ElGamal Ciphertexts

@ Suppose Eve claims to have obtained the plaintext m for an RSA
ciphertext c.

@ |t is easy to verify her claim
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PKC ElGamal

Security of ElGamal Ciphertexts

@ Suppose Eve claims to have obtained the plaintext m for an RSA
ciphertext c.

@ |t is easy to verify her claim

@ Now suppose instead that Eve claims to possess the message m
corresponding to an EIGamal encryption (r, 7).

@ Can you verify her claim?
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PKC ElGamal

Security of ElGamal Ciphertexts

@ Suppose Eve claims to have obtained the plaintext m for an RSA
ciphertext c.

@ |t is easy to verify her claim

@ Now suppose instead that Eve claims to possess the message m
corresponding to an EIGamal encryption (r, 7).

@ Can you verify her claim?

@ This is as hard as the decision Diffie-Hellman problem.
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PKC Elliptic Curve

Elliptic Curves

@ Elliptic curve'! E over field K is defined by

y2 +ajxy+azy = x +a2x2 +asx +ag, a; €K

@ The set of K-rational points E(K) is defined as

EX) ={(x,y) e KxXK: y2 +ayxy+asy = X +a2x2 + asx + ag} U {O}

i

't is called a (generalized) Weierstrass equation. The equation defines a cudi
curve called a Weierstrass curve.
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PKC Elliptic Curve

Elliptic Curves

@ Elliptic curve'! E over field K is defined by

y2 +ajxy+azy = x +a2x2 +asx +ag, a; €K

@ The set of K-rational points E(K) is defined as

EX) ={(x,y) e KxXK: y2 +ayxy+asy = X +a2x2 + asx + ag} U {O}

There exists an addition law on E and the set E(K) with that addition
forms a group.

curve called a Weierstrass curve.
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PKC Elliptic Curve

Elliptic Curves

@ Let K be a field of characteristic # 2,3, and let x*> + ax + b be a
cubic polynomial with no multiple roots, i.e., when

—16(4a® + 27b%) £ 0 = 4a® + 27b* 0.

An elliptic curve over K is the set of points (x, y) with x,y € K which
satisfy the equation

3

V=x+ax+b

together with a single element denoted O and called the point at
infinity.
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PKC Elliptic Curve

Elliptic Curves

@ Let K be a field of characteristic # 2,3, and let x*> + ax + b be a
cubic polynomial with no multiple roots, i.e., when

—16(4a® + 27b%) £ 0 = 4a® + 27b* 0.

An elliptic curve over K is the set of points (x, y) with x,y € K which

satisfy the equation

Shrax+b

¥ =x
together with a single element denoted O and called the point at
infinity.
@ If char K = 2, then an elliptic curve over K is the set of points
satisfying an equation of type either

3 3

V+ey=x+ax+bory? +xy=x+ax+b

together with the point at infinity O.
Public Key Cryptography January 3, 2024 64/109



PKC Elliptic Curve

Elliptic Curves

@ If char K = 3, then an elliptic curve over K is the set of points
satisfying the equation

3

V=x+ax®> +bx+c

together with the point at infinity O.
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PKC Elliptic Curve

Addition Law on Elliptic Curves

Adding two points Doubling a point
y2=x>—-7x+6

/'Li—ijrc‘
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PKC Elliptic Curve

Addition Law on Elliptic Curves |

@ Suppose E is a nonsingular elliptic curve.

@ The point at infinity O, will be the identity element, so
P+O=0+P=PVYPcE.

@ Suppose P,Q € E, where P = (x1,y1) & Q = (x2,y2)
Q@ u#xn

@ Lis the line through P and Q.

@ Lintersects E in the two points P and Q

@ L will intersect E in one further point R’'.

o If we reflect R’ in the x-axis, then we get a point R.

P+0Q=R.
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PKC Elliptic Curve

Addition Law on Elliptic Curves Il

Q@ xv=x&y =-n

(x,)’) + (-x’ —Y) =0

@ x=xn&y=xn

Draw a tangent line L through P
Follow step (i)
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PKC Elliptic Curve

Addition Law on Elliptic Curves

Y= ) -dx+0 ¥kl 2w
8 T T 10
&
4 el
oo
= 0 > 0
5
4 -5t
= _
5 § 1%
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PKC Elliptic Curve

Addition Law on Elliptic Curves

Y =xt-dxez ¥o=x +0x+3
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PKC Elliptic Curve

Addition Law on Elliptic Curves

@ Suppose that we want to add the points Py = (x1,y1) & P> = (x2,y2)
on the elliptic curve

E : y2:x3+ax+b.
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PKC Elliptic Curve

Addition Law on Elliptic Curves

@ Suppose that we want to add the points Py = (x1,y1) & P> = (x2,y2)
on the elliptic curve

E : y2:x3+ax+b.

@ Let the line connecting P, to P, be

L:y=IAx+v

@ Explicitly, the slope and y-intercept of L are given by
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PKC Elliptic Curve

Addition Law on Elliptic Curves

@ Suppose that we want to add the points Py = (x1,y1) & P> = (x2,y2)
on the elliptic curve

E : y2 = x> +ax+b.
@ Let the line connecting P, to P, be
L:y=IAx+v

@ Explicitly, the slope and y-intercept of L are given by

Y2—)1 H
LI P £ P,
A= {?iffb

. and
I if P =P

v=y1 —Ax]

Dhananjoy Dey (Indian Institute of Informa|
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PKC Elliptic Curve

Addition Law on Elliptic Curves

@ Thus, we have
P1 + Py = (x3,—y3),

where x3 = 2> — x; — x, and y3 = Ax3 + v.
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PKC Elliptic Curve

Addition Law on Elliptic Curves
@ Thus, we have
Py + Py = (x3,-y3),

where x3 = 2> — x; — x, and y3 = Ax3 + v.

@ If Py # P, and x| = x», then Py + P, = O.
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PKC Elliptic Curve

Addition Law on Elliptic Curves

@ Thus, we have
Py + Py = (x3,-y3),
where x3 = 2> — x; — x, and y3 = Ax3 + v.
@ If Py # P, and x| = x», then Py + P, = O.

@ If P =Pyandy, =0, then P, + P, =2P; = O.
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PKC Elliptic Curve

Addition Law on Elliptic Curves
@ Thus, we have
Py + Py = (x3,-y3),

where x3 = 2> — x; — x, and y3 = Ax3 + v.
@ If Py # P, and x| = x», then Py + P, = O.

@ If P =Pyandy, =0, then P, + P, =2P; = O.

Visualizing Elliptic Curve Cryptography
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PKC Elliptic Curve

Elliptic Curves over Finite Fields

Let E be the elliptic curve y* = x> + x + 3 over F.3. Then write down all
the points of E over F,3. Draw the elliptic curve E along with the grid.
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PKC Elliptic Curve

Elliptic Curves over Finite Fields

i1 2% 4 08 78 8 0111208 1415 106 17 18 18 200 21 22

The elliptic curve y2 = x3 + x + 3 mod 23
Public Key Cryptography January 3, 2024 74/109



PKC Elliptic Curve

Elliptic Curves over Finite Fields

Problem

Let E be the elliptic curve y* = x> + x + 1 over Fy,. Then write down all
the points of E over Fy,. Draw the elliptic curve E along with the grid.
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PKC Elliptic Curve

Elliptic Curves over Finite Fields
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PKC Elliptic Curve

NIST’s Primes for ECC

Ploy = 2192_264_1
P4 = 2224 _ 296 +1
Prss = 2256 _ 2224 + 2192 + 296 -1
D384 — 2384 _ 2128 _ 296 + 232 -1
psar = 2211
W-25519 = 2%°-19
W-448 = 248 _ 224
Edwards25519 = 2%5-19
Edwards448 = 2#8_2224_

Recommendations for Discrete Logarithm-Based Cryptography: ,
Elliptic Curve Domain Parameters )
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves
@ First choose two public elliptic curve points P and Q s/t

0 =sP,

where s is the private key.
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves
@ First choose two public elliptic curve points P and Q s/t

0 = sP,

where s is the private key.
@ To encrypt choose a random &
@ Ency(m) = (y1,y2)

y1 =kP, y, =m+kQ.
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves
@ First choose two public elliptic curve points P and Q s/t

0 = sP,

where s is the private key.
@ To encrypt choose a random &
@ Ency(m) = (y1,y2)

y1 =kP, y, =m+kQ.

@ Decryption:

Deci(y1,y2) = y2 — s.y1
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves
@ The plaintext space in general may not consist of the points on the
curve E.
@ Convert the plaintext as an arbitrary element in Z,,.

@ Apply a suitable hash function 2 : E — Z, to kQ
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves
@ The plaintext space in general may not consist of the points on the
curve E.
@ Convert the plaintext as an arbitrary element in Z,,.

@ Apply a suitable hash function 2 : E — Z, to kQ
@ To encrypt a message m choose a random k
@ The ciphertext ¢ = Enci(m) = (y1,y2)

y1 = kP, y»=(m+h(kQ)) mod p.

@ Decryption:
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PKC Elliptic Curve
ElGamal Cryptosystems on Elliptic Curves
@ The plaintext space in general may not consist of the points on the
curve E.
@ Convert the plaintext as an arbitrary element in Z,,.

@ Apply a suitable hash function 2 : E — Z, to kQ
@ To encrypt a message m choose a random k
@ The ciphertext ¢ = Enci(m) = (y1,y2)

y1 = kP, y»=(m+h(kQ)) mod p.

@ Decryption:

e Compute A(kQ)
e Compute ¢ = (y; — A(kQ)) mod p
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Key Generation

@ Let E be an elliptic curve defined over Z, (where p > 3 is prime) s/t
E contains a cyclic subgroup H = (P) of prime order n in which the
Discrete Logarithm Problem is infeasible.

@ Leth: E — Z, be a secure hash function.
@ LetP=27,andC = (Z, x Zy) X Z,. Define

K ={(E,P,s,0,nh) : Q=sP},

where P and Q are pointson E and s € Z; .
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Key Generation

@ Let E be an elliptic curve defined over Z, (where p > 3 is prime) s/t
E contains a cyclic subgroup H = (P) of prime order n in which the
Discrete Logarithm Problem is infeasible.

@ Leth: E — Z, be a secure hash function.
@ LetP=27,andC = (Z, x Zy) X Z,. Define

K ={(E,P,s,0,nh) : Q=sP},

where P and Q are pointson E and s € Z; .

The values E, P, O,n, and h are the public key and s is the prnﬁJ
key. R
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Encryption

@ To encrypt a message m sender selects a random number k € Z;,
and compute the ciphertext

vy =eg(m, k) = (y1,y2) = (POINT-COMPRESS(kP), m + h(kQ)
mod p),

where y; € Z, x Zo and y, € Z,.
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Encryption

@ To encrypt a message m sender selects a random number k € Z;,
and compute the ciphertext

vy =eg(m, k) = (y1,y2) = (POINT-COMPRESS(kP), m + h(kQ)
mod p),

where y; € Z, x Zo and y, € Z,.

Decryption

dg(y) = y2 —h(R) mod p,

where R = sPOINT-DECOMPRESS(y)).
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PKC Elliptic Curve

The Many Flaws of Dual EC_DRBG

The Many Flaws of Dual_EC_DRBG

The Dual EC DRBG genevator from NIST

Update 9/19: R5A warns developers not to use the default Duagl EC_DRBG generator
AFE, Oh lord.

As a technical follow up to my previous post about the NSA™s war on crypto, [
wanted to make a few specific points about standards. In particular | wanted to
address the allegation that NSA inserted a backdoor into the Dual-EC

pseudorandom number generator.

For those not following the story, Dual-EC is a pseudorandom number generator
proposed by NIST for international use back in 2006. Just a few months

later, Shumow and Ferguson made cryptographic history by pointing out that there
ioor in the algorithm. This possibility — fairly remarkable
for an algorithm of this type — looked bad and smelled worse. If true, it spelled

might be an NSA b.

almost certain doom for anyone relying on Dual-EC to keep their system safe from

spying eves.
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Key Comparison

Symmetric | Based on | Based on | Based on

Key Size | Factoring DLP ECDLP

(in bits ) (in bits ) (in bits) (in bits )
80 1024 1024 160
112 2048 2048 224
128 3072 3072 256
192 7680 7680 384
256 15360 15360 512
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IF & DLP

Outline

O FaDLP
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IF & DLP Integer Factorization

Integer Factorization
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IF & DLP Integer Factorization

Integer Factorization

@ Basic Method: divide n by all primes p < vn
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IF & DLP Integer Factorization

Integer Factorization

@ Basic Method: divide n by all primes p < vn
@ Fermat factorization:
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IF & DLP Integer Factorization

Integer Factorization

@ Basic Method: divide n by all primes p < vn

@ Fermat factorization:
e The idea: express n as a difference of two squares:

n=xt—y?
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Integer Factorization

@ Basic Method: divide n by all primes p < vn

@ Fermat factorization:

e The idea: express n as a difference of two squares:

n=xt—y?

@ Factor n = 295927
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IF & DLP Integer Factorization

Integer Factorization

@ Basic Method: divide n by all primes p < vn

@ Fermat factorization:

e The idea: express n as a difference of two squares:

n=xt—y?

@ Factor n = 295927

295927 + 1> = 295928 # perfect square
295927 +2% = 295931 # perfect square
295927 +3%> = 295936
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IF & DLP Integer Factorization

Integer Factorization

@ Basic Method: divide n by all primes p < vn

@ Fermat factorization:

e The idea: express n as a difference of two squares:

n=xt—y?

@ Factor n = 295927

295927 + 1> = 295928 # perfect square
295927 +2% = 295931 # perfect square
295927 +3% = 295936 = 544°

205927 = 5442 — 3% = 547 x 541
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IF & DLP Integer Factorization

Integer Factorization

n can be factored if k¢(n) is given

@ Factorize n, with a high probability, if any multiple of ¢(n) is
known;

ved=kx¢n)=k(p—-1)(g-1).

@ Find an exponent r s/t

b"=1 mod n, ¥ b withged(b,n) =1

@ Write r = a - 2% with a odd.
@ Choose arandom b with1 <b <n - 1.
@ If ged(b,n) # 1 we have found a factor of n.
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IF & DLP Integer Factorization

Integer Factorization

n can be factored if k¢(n) is given

@ Otherwise, let by = b* mod n. We compute
by = b} modn, by=b7 modn,b3=b; modn,...

@ If by =1 mod n, we choose another b and repeat the
procedure.

@ Also, if by = —1 mod n for some k, we choose a different b
and repeat the procedure.

@ Ifbyy1 =1 modn & by # +1 mod n for some k,

gcd(by — 1,n) gives a nontrivial divisor of n.
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IF & DLP Integer Factorization

Integer Factorization

n can be factored if k¢(n) is given

@ Otherwise, let by = b* mod n. We compute
by = b} modn, by=b7 modn,b3=b; modn,...

@ If by =1 mod n, we choose another b and repeat the
procedure.

@ Also, if by = —1 mod n for some k, we choose a different b
and repeat the procedure.

@ Ifbyy1 =1 modn & by # +1 mod n for some k,

gcd(by — 1,n) gives a nontrivial divisor of n.

So, if the decryption exponent leaks out, changing only e and d is
enough. Uﬁl!!
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IF & DLP Integer Factorization

Integer Factorization

@ Suppose n = 667,e = 39,d = 79. We have (39 x 79) — 1 = 23 x 385.
@ First select b = 3, so ged(3,667) = 1.
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IF & DLP Integer Factorization

Integer Factorization

@ Suppose n = 667,e = 39,d = 79. We have (39 x 79) — 1 = 23 x 385.
@ First select b = 3, so ged(3,667) = 1.

@ We have

bO — 3385

162 mod 667

by = B = 231  mod 667
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IF & DLP Integer Factorization

Integer Factorization

@ Suppose n = 667,e = 39,d = 79. We have (39 x 79) — 1 = 23 x 385.
@ First select b = 3, so ged(3,667) = 1.

@ We have
by = 3% = 162 mod 667
by = B = 231 mod 667
by = b =1 mod 667

@ We have b, =1 mod 667 & b; # =1 mod 667.
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IF & DLP Integer Factorization

Integer Factorization

@ Suppose n = 667,e = 39,d = 79. We have (39 x 79) — 1 = 23 x 385.
@ First select b = 3, so ged(3,667) = 1.

@ We have
by = 3% = 162 mod 667
by = B = 231 mod 667
by = b =1 mod 667

@ We have b, =1 mod 667 & b; # =1 mod 667.

o
ged(by — 1,667) = (230, 667)
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IF & DLP Integer Factorization

Integer Factorization

@ Suppose n = 667,e = 39,d = 79. We have (39 x 79) — 1 = 23 x 385.
@ First select b = 3, so ged(3,667) = 1.

@ We have
by = 3% = 162 mod 667
by = B = 231 mod 667
by = b =1 mod 667

@ We have b, =1 mod 667 & b; # =1 mod 667.

o
ged(by — 1,667) = (230,667) = 23 = 667 = 23 X 29

Dhananjoy Dey (Indian Institute of Informa Public Key Cryptography January 3, 2024

88/109



IF & DLP Integer Factorization

Integer Factorization

Pollard’s p — 1 method

@ It works if p | nand p — 1 has only small prime factors.




IF & DLP Integer Factorization

Integer Factorization

Pollard’s p — 1 method

@ It works if p | nand p — 1 has only small prime factors.
@ Choose anintegera > 1; leta = 2.
@ We choose a bound B and compute b = a®' mod n

@ If p — 1 has only small prime factors. Then B! is likely to be
divisible by p — 1, say B! = (p — 1)k. We have

b=d = (a”_l)k =1 mod p




IF & DLP Integer Factorization

Integer Factorization

Pollard’s p — 1 method

@ It works if p | nand p — 1 has only small prime factors.
@ Choose anintegera > 1; leta = 2.
@ We choose a bound B and compute b = a®' mod n

@ If p — 1 has only small prime factors. Then B! is likely to be
divisible by p — 1, say B! = (p — 1)k. We have

b=db = (a”‘l)k =1 modp=gedb-1,n)=p
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Pollard’s p — 1 method

Algorithm

Input: Integer n to be factored

@ Set a =2 (or some other convenient value)
© For{j=2,3,4,... up to a specified bound.}{
@ Seta=a/ modn
@ Compute d = ged(a - 1,n)
@ If1 <d < nthen success, returnd.

}
© Increment j and loop again at Step 2.
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IF & DLP Integer Factorization

Integer Factorization

Factor n = 13927189 starting with ged(2®' - 1,n)
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IF & DLP Integer Factorization

Integer Factorization

Factor n = 13927189 starting with ged(2®' - 1,n)

2% —1 = 13867883 mod 13927189, | gcd(2® -1,13927189) = 1,
29— 1 = 5129508 mod 13927189, | ged(2'® -1,13927189) = |1,
2! —1 = 4405233 mod 13927189, | ged(2'' -1,13927189) = |1,
22— 1 = 6680550 mod 13927189, | gcd(2'* -1,13927189) = |1,
2B8'—1 = 6161077 mod 13927189, | ged(2'* -1,13927189) = |1,
2% —1 = 879290 mod 13927189, ged(2'* —1,13927189) = 3823.
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IF & DLP Integer Factorization

Integer Factorization

Factor n = 13927189 starting with ged(2®' - 1,n)

2% —1 = 13867883 mod 13927189, | gcd(2® -1,13927189) = 1,
29— 1 = 5129508 mod 13927189, | ged(2'® -1,13927189) = |1,
2! —1 = 4405233 mod 13927189, | ged(2'' -1,13927189) = |1,
22— 1 = 6680550 mod 13927189, | gcd(2'* -1,13927189) = |1,
2B8'—1 = 6161077 mod 13927189, | ged(2'* -1,13927189) = |1,
2% —1 = 879290 mod 13927189, ged(2'* —1,13927189) = 3823.

p=38230f n. Thus g = 2 = 133878 = 3643,
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IF & DLP Integer Factorization

Factorization via Difference of Squares

-V =X+YV)X-Y).
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@ Search for an integer b s/t n + b* is a perfect square, say equal to

a.
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IF & DLP Integer Factorization

Factorization via Difference of Squares

-V =X+YV)X-Y).

@ Search for an integer b s/t n + b* is a perfect square, say equal to
2

a-.
@ Thenn+b? = a?, so

nzaz—bzz(a+b)(a—b),

and we have found the factors of n.
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IF & DLP Integer Factorization

Factorization via Difference of Squares

-V =X+YV)X-Y).

@ Search for an integer b s/t n + b* is a perfect square, say equal to

a.

@ Thenn+b? = a?, so

nzaz—bzz(a+b)(a—b),

and we have found the factors of n.
@ ltis called Fermat factorisation method.
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IF & DLP Integer Factorization

Factorization via Difference of Squares

Factor n = 25217 by looking for an integer » making » + b a perfect
square
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IF & DLP Integer Factorization

Factorization via Difference of Squares

Factor n = 25217 by looking for an integer » making » + b a perfect

square

25217 + 12
25217 + 22
25217 + 32
25217 + 42
25217 + 52
25217 + 62
25217 + 77

Dhananjoy Dey (Indian Institute of Informa|

25218
25221
25226
25233
25242
25253
25266

Public Key Cryptography

not a square,
not a square,
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January 3, 2024




IF & DLP Integer Factorization

Factorization via Difference of Squares

Factor n = 25217 by looking for an integer » making » + b a perfect
square

25217+ 1% = 25218 not a square,
25217 +2% = 25221 not a square,
25217 +3% = 25226 not a square,
25217 +4*> = 25233 not a square,
25217 +5% = 25242 not a square,
25217 + 6% = 25253 not a square,
25217+ 7> = 25266 not a square,

25217 +8% = 25281 =159% Eureka!
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IF & DLP Integer Factorization

Factorization via Difference of Squares

Factor n = 25217 by looking for an integer » making » + b a perfect
square

25217+ 1% = 25218 not a square,
25217 +2% = 25221 not a square,
25217 +3% = 25226 not a square,
25217 +4*> = 25233 not a square,
25217 +5% = 25242 not a square,
25217 + 6% = 25253 not a square,
25217+ 7> = 25266 not a square,

25217 +8% = 25281 =159% Eureka!

Then we compute

25217 = 1597 — 8% = (159 + 8)(159 — 8) = 167 x 151.
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IF & DLP Integer Factorization

Factorization via Difference of Squares

@ If nis large, then it is unlikely that a randomly chosen value of b
will make n + b into a perfect square.

v

i
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IF & DLP Integer Factorization

Factorization via Difference of Squares

@ If nis large, then it is unlikely that a randomly chosen value of b
will make n + b into a perfect square.

@ It often suffices to write some multiple kn of n as a difference of 2
squares, since if

kn=a* —b* = (a+b)a-Db),

then there is a reasonable chance that the factors of n are
separated by the right-hand side of the equation.

@ n has a nontrivial factor in common with each of a + » and a — b.

@ Recover the factors by computing ged(n,a + b) & ged(n, a — b).

i
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IF & DLP Integer Factorization

Dixon’s Factorization Method

@ In 1981, John D. Dixon developed this method.
@ The ldea:

o Generate a large number of integer pairs (x, y) s/t

X = y2 mod n,

where x # £y mod n
e x> mod nandy?> mod n can be completely factorized over the
chosen factor base.
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IF & DLP Integer Factorization

Dixon’s Factorization Method

@ In 1981, John D. Dixon developed this method.
@ The ldea:

o Generate a large number of integer pairs (x, y) s/t

¥ =y> modn,

where x # £y mod n
e x> mod nandy?> mod n can be completely factorized over the
chosen factor base.

Definition
A positive integer is called B-smooth if none of its prime factors is
greater than B.
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IF & DLP Integer Factorization

Dixon’s Factorization Method

@ In 1981, John D. Dixon developed this method.
@ The ldea:

o Generate a large number of integer pairs (x, y) s/t

¥ =y> modn,

where x # £y mod n
e x> mod nandy?> mod n can be completely factorized over the
chosen factor base.

Definition

A positive integer is called B-smooth if none of its prime factors is
greater than B.

@ 720 = 2% x 32 x 5!: thus 720 is 5-smooth
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IF & DLP Integer Factorization

Dixon’s Factorization Method

Factor n = 84923 using bound B = 7
@ Randomly search for integers between 4] v/n] = 292 and »n whose
squares are B-smooth

o
513> mod n = 8400 =
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IF & DLP Integer Factorization

Dixon’s Factorization Method

Factor n = 84923 using bound B = 7

@ Randomly search for integers between 4] v/n] = 292 and »n whose
squares are B-smooth

o
5132 mod n=28400= =2*x3'x5*x7!

5372 mod n = 33600 =
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IF & DLP Integer Factorization

Dixon’s Factorization Method

Factor n = 84923 using bound B = 7
@ Randomly search for integers between 4] v/n] = 292 and »n whose
squares are B-smooth

o
5132 mod n=28400= =2*x3'x5*x7!

5372 mod n = 33600 = 2° x 3! x 52 x 7
@ (513x537)? mod n=2""%3%2x5*x7%= (25.3.52.7)2 = (16800)?
= (275481)> = (16800)> mod 84923 = (20712)? = (16800)>
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IF & DLP Integer Factorization

Dixon’s Factorization Method

Factor n = 84923 using bound B = 7
@ Randomly search for integers between 4] v/n] = 292 and »n whose
squares are B-smooth

o
5132 mod n=28400= =2*x3'x5*x7!

5372 mod n = 33600 = 2° x 3! x 52 x 7
@ (513x537)? mod n=2""%3%2x5*x7%= (25.3.52.7)2 = (16800)?
= (275481)> = (16800)> mod 84923 = (20712)? = (16800)>

@ 84923 = gcd(20712 — 16800, 84923) x gcd(20712 + 16800, 84923)
=163 x 521
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A Bad Way to Solve DLP

Problem

Find x s/ty = g* mod p
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A Bad Way to Solve DLP

Problem
Find x s/ty = g* mod p

@ Input: y

@ Forx=0top-1

e Compute g*
e Ifg* =y mod p then output(x) and STOP

v )
i -
James ¢
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A Bad Way to Solve DLP

Problem
Find x s/ty = g* mod p

@ Input: y

@ Forx=0top-1

e Compute g*
e Ifg* =y mod p then output(x) and STOP

The worst case ~ p steps

v )
i -
James ¢
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

DLP

Find ¢* =/ mod p in O(+/p.log p) steps using O(+/p) storage.
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

DLP

Find ¢* =/ mod p in O(+/p.log p) steps using O(+/p) storage.

Q@ Letm =1+[+/pl, soin particular, m > /p.
©Q Create two lists,
List1: e,g,8%.¢%,...,8",

2

List 2: h,h.g_’",h.g_zm,h.g_3m,...,h.g‘m .
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

DLP

Find ¢* =/ mod p in O(+/p.log p) steps using O(+/p) storage.

Q@ Letm =1+[+/pl, soin particular, m > /p.
© Create two lists,

List1: e,g,8%.¢%,...,8",

List2: h hg™ hg 2" hg™ .. . hg™.
© Find a match between the 2 lists, say g' = h.g7/".
© Then x =i+ jmis a solution to g* = h.
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

Solve the discrete logarithm problem g* = 4 in F), with
g =9704,h = 13896, & p = 17389.

!
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

Solve the discrete logarithm problem g* = 4 in F), with
g =9704,h = 13896, & p = 17389.

@ The number 9704 has order? 1242 in F,.,.

@ Setm =1+ [VI1242] =36 and
u=g"™=9704"3° = 2494 mod 17389.

2l agrange’s theorem says that the order of g divides 17388 = 22.33.7.23. So
we can determine the order of g by computing g" for the 48 distinct divisors of
17388
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

Solve the discrete logarithm problem g* = 4 in F), with
g =9704,h = 13896, & p = 17389.

(e[ o Ta-o® J[ & T o8 [a-ou® [ & [ oF heu® [k [T o° houk
1 9704 347 9 15774 16564 17 10137 10230 25 4970 12260
2 G181 13357 10 12018 11741 18 17264 3957 26 alR3 GLTHE
3 5763 12423 11 16360 16367 19 4230 9195 27 10596 7705
4 1128 13153 12 13259 T35 20 QRE0 13628 28 2427 1425
[ 8431 TO28 13 4125 2549 21 9983 10128 29 BO02 [
L] 16568 1139 14 16811 10221 22 15501 5416 30 11969 12831
7 || 14567 | 6350 || 15 || 4351 | 1oaso || 23 || o854 | 18640 || 31 || 6045 | 4754
8 2087 12013 16 1612 4062 24 156580 5276 32 T583 14587
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

Solve the discrete logarithm problem g* = 4 in F), with
g =9704,h = 13896, & p = 17389.

(e[ o Ta-o® J[ & T o8 [a-ou® [ & [ oF heu® [k [T o° houk
1 9704 347 9 15774 16564 17 10137 10230 25 4970 12260
2 G181 13357 10 12018 11741 18 17264 3957 26 alR3 GLTHE
3 5763 12423 11 16360 16367 19 4230 9195 27 10596 7705
4 1128 13153 12 13259 T35 20 QRE0 13628 28 2427 1425
[ 8431 TO28 13 4125 2549 21 9983 10128 29 BO02 [
L] 16568 1139 14 16811 10221 22 15501 5416 30 11969 12831
7 || 14567 | 6350 || 15 || 4351 | 1oaso || 23 || o854 | 18640 || 31 || 6045 | 4754
8 2087 12013 16 1612 4062 24 156580 5276 32 T583 14587

@ Find the collision 97047 = 14567 = 13896.249432 mod 17389
@ Using the fact that 2494 = 97043, we compute
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Discrete Logarithm Problem
Shanks’s Babystep-Giantstep Algorithm

Solve the discrete logarithm problem g* = 4 in F), with
g =9704,h = 13896, & p = 17389.

[l o8 Taow® [ & [ o8 [ha-of J[ & T o8 [n-uf [ & [ oF [ n-oF
1 9704 347 ] 15774 | 16564 17 || 10187 | 10230 25 4970 | 12260
2 G1l&1 13357 10 12818 11741 18 17264 3957 28 D183 G578
3 5763 12423 11 || 16360 | ieaer 9 1230 9105 27 || 10596 | 7705
1 1128 13153 iz || 13250 | 7ais 20 9880 | 13628 28 2427 1425
5 8431 7028 13 1128 2540 21 9963 | 10126 29 5902 6604
5 16568 1139 14 || 16911 | 10221 22 || 15501 | 5416 30 || 11960 | 12831
7 || 14587 | 6259 || 15 || 4351 16289 23 6854 | 18640 |[ 3l 6045 | 4754
8 2087 | 12013 i6 1612 1062 24 || 15680 | 5276 32 7583 | 14667

@ Find the collision 97047 = 14567 = 13896.249432 mod 17389
@ Using the fact that 2494 = 97043, we compute

13896 = 97047.2494~% = 97047 (9704~%)” 2 2 97041159
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Digital Signature

Outline

e Digital Signature

Dhananjoy Dey (Indian Institute of Informa Public Key Cryptography January 3, 2024 101/109



Digital Signature

Signature Scheme

A signature scheme is a five-tuple (P, A, K, S, V), where the following conditions are
satisfied:
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Digital Signature

Signature Scheme

A signature scheme is a five-tuple (P, A, K, S, V), where the following conditions are
satisfied:

# is a finite set of possible messages
A is afinite set of possible signatures
K, the keyspace, is a finite set of possible keys

6666

For each K € K, there is a signing algorithm sigx € S and a corresponding
verification algorithm very € V. Each sigx : £ — A and

very @ P XA — {true, false} are functions s/t the following equation is satisfied
for every message x € £ and for every signature y € A

[ true ity = sigg(x)
VKT false if y #  sigr(x)

A pair (x,y) with x e # and y € A is called a signed message.
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Digital Signature

Signing a Message M

Hash Function Private Key
g Digest g Signature

Message M

Verifying a Signature

Message M Hash Function m\

Public Key , Fenesuavmm ——
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RSA Signature Scheme

Signature Generation

A signs a message m. Any entity B can verify A’s signature and recover
the message m from the signature.

@ Compute m = R(m), where R : M — Z,.

@ Compute s = m? mod n.

@ A’s signature for m is s.
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RSA Signature Scheme

Signature Generation

A signs a message m. Any entity B can verify A’s signature and recover
the message m from the signature.

@ Compute m = R(m), where R : M — Z,.

@ Compute s = m? mod n.

@ A’s signature for m is s.

Signature Verification

To verify A’s signature s and recover the message m, B should:
@ Obtain A’s authentic public key (n, e).
@ Compute m = s¢ mod n.
@ Verify that m € range of M; if not, reject the signature.
@ Recover m = R™' ().
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Digital Signature Digital Signature Algorithm (DSA)

Key Generation

@ Choose a hash function #.

© Decide a key length L.

© Choose prime ¢ with with same number of bits as output of .
© Choose a-bit prime p such that ¢|(p — 1).

© Choose g suchthat g =1 mod p.

Choosex : 0O<x<gq.
Calculate : y=g* mod p.
(p.q.8.y) ~ — Public Key

X — Private Key
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Digital Signature Digital Signature Algorithm (DSA)

Signature Generation

@ Generate random k such that 0 < k < g.
@ Calculate r = (¢¢ mod p) mod g.

© Calculate s = (k"' (h(m) + xr)) mod gq.
Q Signature is (7, s).
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Digital Signature Digital Signature Algorithm (DSA)

Signature Generation

@ Generate random k such that 0 < k < g.
@ Calculate r = (¢¢ mod p) mod g.

© Calculate s = (k"' (h(m) + xr)) mod gq.
Q Signature is (7, s).

Signature Verification

Q@ w=s5"! modg.

Q u = (h(m).w) mod gq.

Q u, =rw mod g.

Q v=(g"y"” mod p) mod q.
Q Verifyv=r.
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Digital Signature Digital Signature Algorithm (DSA)

Schnorr Signature Scheme

Key Generation

@ Let p be a prime s/t the DLP in Z; is intractable, and let g be a
primeandqg|(p—1). Leta€Z, bea ¢ root of unity modulo p. Let
P =1{0,1}", A =Z, X Zy, and define

K=1{p,q.a,a,p) : B=a” mod p},

where0<a<gqg-1.

The values p, ¢, @, and g are the public key, and a is the private
key.

Finally, let # : {0,1}" — Z, be a secure hash function.
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Digital Signature Digital Signature Algorithm (DSA)

Schnorr Signature Scheme

Signature Generation
@ Signer first selects a (secret) random number k, 1 < k < g — 1, define
sigk(x, k) = (y,0),

where
v = h(xll* mod p) & & = k + ay mod q.

Verification

@ Forx€{0,1} and vy, 6 € Z,, verification is done by performing the following
computations:

verg(x, (v,0)) = true = h(xlla’8™ mod p) =y.
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http://www.cacr.math.uwateroo.ca/hac/

The End

Thanks a lot for your attention!
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