Introduction to Graph Theory

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

July 20, 2023

Disclaimers

All the pictures used in this presentation are taken from freely available websites.

2

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

Outline

Outline

Introduction

- Graph theory is a practical branch of mathematics that deals with the arrangements of certain objects known as vertices (or nodes) and the relationships between them.
${ }^{1}$ The 4-colour theorem states that given any map it is possible to colour the regions of the map with no more than four colours such that no two adjacent regions havelthe same colour.

Introduction

- Graph theory is a practical branch of mathematics that deals with the arrangements of certain objects known as vertices (or nodes) and the relationships between them.
- It has been applied to practical problems such as the modelling of computer networks, determining the shortest driving route between two cities, the link structure of a website, the travelling salesman problem, electric networks, organic chemical isomers, and the four-colour problem ${ }^{1}$.

[^0]
Discovery

Discovery

Problem (Königsberg Bridge Problem)

- The problem goes back to year 1736

B

- Begin at any of the four land areas $A, B, C, \& D$, walk across each bridge exactly once and return to the starting point.

Discovery

- Euler settled this famous unsolved problem in 1736
- He became the father of graph theory as well as topology
- Euler replaced each land area by a point and each bridge by a line joining the corresponding points, thereby producing a "graph"

Discovery

- Euler settled this famous unsolved problem in 1736
- He became the father of graph theory as well as topology
- Euler replaced each land area by a point and each bridge by a line joining the corresponding points, thereby producing a "graph"

Problem (Königsberg Bridge Problem)

Graphs

Definition

A graph $G=(V, E)$ consists of a nonempty set V of vertices (or nodes) and a set $E(\subseteq V \times V)$ of edges.
Each edge has either one or two vertices associated with it, called its endpoints.
An edge is said to connect its endpoints.

Graphs

Definition

A graph $G=(V, E)$ consists of a nonempty set V of vertices (or nodes) and a set $E(\subseteq V \times V)$ of edges.
Each edge has either one or two vertices associated with it, called its endpoints.
An edge is said to connect its endpoints.

- We write $V(G)$ for the set of vertices/nodes/points.
- We denote $E(G)$ for the set of edges/lines/arcs of a graph G.
- $|G|=|V(G)|$ denotes the number of vertices.
- $e(G)=|E(G)|$ denotes the number of edges.

Graphs

Definition

A graph $G=(V, E)$ consists of a nonempty set V of vertices (or nodes) and a set $E(\subseteq V \times V)$ of edges.
Each edge has either one or two vertices associated with it, called its endpoints.
An edge is said to connect its endpoints.

- We write $V(G)$ for the set of vertices/nodes/points.
- We denote $E(G)$ for the set of edges/lines/arcs of a graph G.
- $|G|=|V(G)|$ denotes the number of vertices.
- $e(G)=|E(G)|$ denotes the number of edges.

$$
\begin{array}{rllll}
\text { vertex } & \rightarrow & \text { point } & \text { node } & \text { junction } \\
\text { edge } & \rightarrow & \text { line } & \text { arc } & \text { branch }
\end{array}
$$

Graphs

Definition

- A loop is an edge (v, v) for some $v \in V$.
- An edge $e=(u, v)$ is a multiple edge if it appears multiple times in E.

Graphs

Definition

- A loop is an edge (v, v) for some $v \in V$.
- An edge $e=(u, v)$ is a multiple edge if it appears multiple times in E.
- A graph is simple if it has no loops or multiple edges.
- Multigraphs may have multiple edges connecting the same two vertices. When m different edges connect the vertices u \& v, we say that $\{u, v\}$ is an edge of multiplicity m.

Graphs

Definition

- A loop is an edge (v, v) for some $v \in V$.
- An edge $e=(u, v)$ is a multiple edge if it appears multiple times in E.
- A graph is simple if it has no loops or multiple edges.
- Multigraphs may have multiple edges connecting the same two vertices. When m different edges connect the vertices u \& v, we say that $\{u, v\}$ is an edge of multiplicity m.
- A pseudograph may include loops, as well as multiple edges connecting the same pair of vertices.

Graphs

Example (Example of Simple Graphs)

Graphs

Example (Example of Simple Graphs)

The function $\phi: G_{1} \rightarrow G_{2}$ given by
$\phi(1)=a, \phi(2)=c, \phi(3)=b, \phi(4)=d$
is an isomorphism.

Graphs

Example (Varieties of Graphs)

Graphs

Example (Varieties of Graphs)

- every graph with four points is isomorphic with one of these
- the 5 graphs to the left of the dashed curve are disconnected
- the 6 graphs to its right are connected

Graphs

Example (Varieties of Graphs)

- every graph with four points is isomorphic with one of these
- the 5 graphs to the left of the dashed curve are disconnected
- the 6 graphs to its right are connected
- the last graph is complete
- the first graph is totally disconnected

Graphs

Example (Varieties of Graphs)

- every graph with four points is isomorphic with one of these
- the 5 graphs to the left of the dashed curve are disconnected
- the 6 graphs to its right are connected
- the last graph is complete
- the first graph is totally disconnected
- the first graph with four lines is a cycle
- the first graph with three lines is a path

Graphs

Example (Multigraph \& Pseudograph)

Graphs

Example (Multigraph \& Pseudograph)

Remark:

- We have a lot of freedom when we draw a picture of a graph.

Graphs

Example (Multigraph \& Pseudograph)

Remark:

- We have a lot of freedom when we draw a picture of a graph.
- All that matters is the connections made by the edges, not the particular geometry depicted.
- For example, the lengths of edges, whether edges cross, how vertices are depicted, so on, do not matter.

Graphs

Definition

- Vertices u, v are adjacent in G if $(u, v) \in E(G)$.
- An edge $e \in E(G)$ is incident to a vertex $v \in V(G)$ if (v, \cdot) or $(\cdot, v)=e$.
- If $(u, v) \in E$ then v is a neighbour of u.

Graphs

Definition

- Vertices u, v are adjacent in G if $(u, v) \in E(G)$.
- An edge $e \in E(G)$ is incident to a vertex $v \in V(G)$ if (v, \cdot) or $(\cdot, v)=e$.
- If $(u, v) \in E$ then v is a neighbour of u.

Remark:

- A graph with an infinite vertex set V is called an infinite graph. A graph with a finite vertex set is called a finite graph.
- We restrict our attention to finite graphs only.

Directed Graphs

Definition

A directed graph or digraph D consists of a finite nonempty set V of points together with a prescribed collection E of ordered pairs of distinct points.

The elements of E are directed lines or edges.
An oriented graph is a digraph having no symmetric pair of directed lines.

Directed Graphs

Definition

A directed graph or digraph D consists of a finite nonempty set V of points together with a prescribed collection E of ordered pairs of distinct points.

The elements of E are directed lines or edges.
An oriented graph is a digraph having no symmetric pair of directed lines.

- Each edge is associated with an ordered pair of vertices.
- The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.

Directed Graphs

Definition

A directed graph or digraph D consists of a finite nonempty set V of points together with a prescribed collection E of ordered pairs of distinct points.

The elements of E are directed lines or edges.
An oriented graph is a digraph having no symmetric pair of directed lines.

- Each edge is associated with an ordered pair of vertices.
- The directed edge associated with the ordered pair (u, v) is said to start at u and end at v.
- By definition, a digraph has no loops or multiple edges.

Directed Graphs

Example

- All digraphs with 3 points and 3 lines are shown.
- The last 2 are oriented graphs.

Directed Graphs

Definition

A graph G is labeled when the p points are distinguished from one another by names such as

$$
v_{1}, v_{2}, \ldots, v_{p}
$$

Directed Graphs

Definition

A graph G is labeled when the p points are distinguished from one another by names such as

$$
v_{1}, v_{2}, \ldots, v_{p}
$$

Definition

A simple directed graph has no loops and no multiple edges.

Directed Graphs

Definition

A graph G is labeled when the p points are distinguished from one another by names such as

$$
v_{1}, v_{2}, \ldots, v_{p}
$$

Definition

A simple directed graph has no loops and no multiple edges.
A directed multigraph may have multiple directed edges. When there are m directed edges from the vertex u to the vertex v, we say that (u, v) is an edge of multiplicity m.

Graph Terminology: Summary

Type	Edges	Multiple Edges	Loops
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes

Graph Terminology: Summary

Type	Edges	Multiple Edges	Loops
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Directed	Yes	Yes

Graph Terminology: Summary

Type	Edges	Multiple Edges	Loops
Simple graph	Undirected	No	No
Multigraph	Undirected	Yes	No
Pseudograph	Undirected	Yes	Yes
Simple directed graph	Directed	No	No
Directed multigraph	Directed	Yes	Yes
Mixed graph	 undirected	Yes	Yes

Applications of Graphs

- Computer Networks (vertices represent data centers \& edges represent communication links.)
- Social networks (individuals/organizations are represented by vertices; relationships between individuals/organizations are represented by edges)
- Communications networks (vertices represent devices \& edges represent the particular type of communications links of interest)
- Information networks
- Software design
- Transportation networks
- Biological networks
-

Outline

Basic Terminology

Definition

- Let $G=(V, E)$ be a graph. Each pair $x=\{u, v\}$ of points in E is a line of G, and x is said to join u \& v.
- We denote $x=u v$ and say that $u \& v$ are adjacent points (sometimes denoted by u adj v).
- Point u and line x are incident with each other (||ly for $v \& x$).
- If two distinct lines x \& y are incident with a common point, then they are called adjacent lines.

Basic Terminology

Definition

- Let $G=(V, E)$ be a graph. Each pair $x=\{u, v\}$ of points in E is a line of G, and x is said to join u \& v.
- We denote $x=u v$ and say that $u \& v$ are adjacent points (sometimes denoted by u adj v).
- Point u and line x are incident with each other (||ly for $v \& x$).
- If two distinct lines x \& y are incident with a common point, then they are called adjacent lines.
- A graph with p points and q lines is called a (p, q) graph $^{\text {a }}$.
${ }^{\text {a }}$ The $(1,0)$ graph is the trivial graph

Graph Isomorphism

Definition

Two (labeled) graphs $G \& H$ are isomorphic (denoted by $G \cong H$) if ヨ a one-to-one correspondence between their point sets which preserves adjacency.

Graph Isomorphism

Definition

Two (labeled) graphs $G \& H$ are isomorphic (denoted by $G \cong H$) if ヨ a one-to-one correspondence between their point sets which preserves adjacency.

Example

G_{3} :

Graph Isomorphism

Definition

Two (labeled) graphs $G \& H$ are isomorphic (denoted by $G \cong H$) if ヨ a one-to-one correspondence between their point sets which preserves adjacency.

Example

G_{3} :

Isomorphism is an equivalence relation of graphs.

Graph Isomorphism

Definition

An invariant of a graph G is a number associated with G which has the same value for any graph isomorphic to G. Thus the numbers $p \& q$ are certainly invariants.

Graph Isomorphism

Definition

An invariant of a graph G is a number associated with G which has the same value for any graph isomorphic to G. Thus the numbers $p \& q$ are certainly invariants.

- A complete set of invariants determines a graph up to isomorphism.

Graph Isomorphism

Definition

An invariant of a graph G is a number associated with G which has the same value for any graph isomorphic to G. Thus the numbers $p \& q$ are certainly invariants.

- A complete set of invariants determines a graph up to isomorphism.
- No decent complete set of invariants for a graph is known.

Subgraph

Definition

(1) A subgraph of G is a graph having all of its points and lines in G. If G_{1} is a subgraph of G, then G is a supergraph of G_{1}.

Subgraph

Definition

(1) A subgraph of G is a graph having all of its points and lines in G.

If G_{1} is a subgraph of G, then G is a supergraph of G_{1}.
(2) A spanning subgraph is a subgraph containing all the points of G.
(3) For any set S of points of G, the induced subgraph $\langle S\rangle$ is the maximal subgraph of G with point set S.

Thus two points of S are adjacent in $\langle S\rangle$ iff they are adjacent in G.

Subgraph

Example

Subgraph

Example

- G_{2} is a spanning subgraph of G but G_{1} is not.

Subgraph

Example

$\boldsymbol{G}:$

- G_{2} is a spanning subgraph of G but G_{1} is not.
- G_{1} is an induced subgraph but G_{2} is not.

Subgraph

Figure: A graph \pm a specific point or line

Adjacency Matrices

Definition

Let $G=(V, E)$ be a graph with $V=\{1,2, \ldots, n\}$. The adjacency matrix $A=A(G)$ is the $n \times n$ symmetric matrix defined by

$$
a_{i j}=\left\{\begin{array}{l}
1 \quad \text { if }(i, j) \in E \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Adjacency Matrices

Example

Adjacency Matrices

Example

Adjacency Matrices

Example

Remark: Any adjacency matrix A is real and symmetric

Incidence Matrices

Definition

Let $G=(V, E)$ be a graph with $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$. Then the incidence matrix $B=B(G)$ of G is the $n \times m$ matrix defined by

$$
b_{i j}=\left\{\begin{array}{l}
1 \quad \text { if } v_{i} \in e_{j}, \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Incidence Matrices

Example

Incidence Matrices

Example

$$
B=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Incidence Matrices

Example

$$
B=\left(\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Remark: Every column of B has 2 entries 1 .

Degrees of Vertices

Definition

The degree ${ }^{a}$ of a point $v_{i} \in G$, denoted by d_{i} or deg v_{i}, is the number of lines incident with v_{i}.

[^1]
Degrees of Vertices

Definition

The degree ${ }^{a}$ of a point $v_{i} \in G$, denoted by d_{i} or $\operatorname{deg} v_{i}$, is the number of lines incident with v_{i}.
${ }^{\text {a }}$ sometimes called valency

- Every line is incident with two points, it contributes 2 to the sum of the degrees of the points.

Degrees of Vertices

Definition

The degree ${ }^{a}$ of a point $v_{i} \in G$, denoted by d_{i} or $\operatorname{deg} v_{i}$, is the number of lines incident with v_{i}.

${ }^{a}$ sometimes called valency

- Every line is incident with two points, it contributes 2 to the sum of the degrees of the points.

Theorem (Euler)

The sum of the degrees of the points of a graph G is twice the number of lines ${ }^{a}$,

$$
\sum d e g v_{i}=2 q
$$

${ }^{\text {a }}$ it was the first theorem of graph theory! Also called Handshaking

Degrees of Vertices

Exercise

(1) How many edges are there in a graph with 10 vertices each of degree 3?

Degrees of Vertices

Exercise

(1) How many edges are there in a graph with 10 vertices each of degree 3?
(2) If a graph has 5 vertices, can each vertex have degree 3?

Degrees of Vertices

Exercise

(1) How many edges are there in a graph with 10 vertices each of degree 3?
(2) If a graph has 5 vertices, can each vertex have degree 3?

Corollary

In any graph, the number of points of odd degree is even.

Degrees of Vertices

Definition

(1) In a (p, q) graph, $0 \leq \operatorname{deg} v \leq p-1$ for every point v.

The minimum degree among the points of G is denoted min deg G or $\delta(G)$
while $\Delta(G)=$ max deg G is the largest such number.

Degrees of Vertices

Definition

(1) In a (p, q) graph, $0 \leq \operatorname{deg} v \leq p-1$ for every point v.

The minimum degree among the points of G is denoted min deg G or $\delta(G)$
while $\Delta(G)=$ max deg G is the largest such number.
(2) If $\delta(G)=\Delta(G)=r$, then all points have the same degree and G is called regular of degree r.
We then say of the degree of G and write $\operatorname{deg} G=r$.

Degrees of Vertices

Definition

(1) In a (p, q) graph, $0 \leq \operatorname{deg} v \leq p-1$ for every point v.

The minimum degree among the points of G is denoted min deg G or $\delta(G)$
while $\Delta(G)=$ max deg G is the largest such number.
(2) If $\delta(G)=\Delta(G)=r$, then all points have the same degree and G is called regular of degree r.

We then say of the degree of G and write $\operatorname{deg} G=r$.

Corollary

Every cubic graph has an even number of points.

Degrees of Vertices

Definition

The point v is said to be isolated if deg $v=0$ and it is said to be an endpoint if deg $v=1$.

Problem

Prove that at any party with 6 people, there are 3 mutual acquaintances or 3 mutual non-acquaintances.

Complement of a Graph

Definition

(1) The complement \bar{G} of a graph G has $V(G)$ as its point set, but two points are adjacent in \bar{G} iff they are not adjacent in G.
(2) A self complementary graph is isomorphic with its complement.

Complement of a Graph

Definition

(1) The complement \bar{G} of a graph G has $V(G)$ as its point set, but two points are adjacent in \bar{G} iff they are not adjacent in G.
(2) A self complementary graph is isomorphic with its complement.

Complement of a Graph

Definition

(1) The complement \bar{G} of a graph G has $V(G)$ as its point set, but two points are adjacent in \bar{G} iff they are not adjacent in G.
(2) A self complementary graph is isomorphic with its complement.

Figure: A graph and its complement

Self-complementary Graph

Figure: The smallest nontrivial self-complementary graphs

Special Graphs

Definition

The complete graph or clique ${ }^{a} K_{p}$ has every pair of its p points adjacent.
Thus K_{p} has $\binom{p}{2}$ lines and is regular of degree $p-1$.

[^2]
Special Graphs

Definition

The complete graph or clique ${ }^{a} K_{p}$ has every pair of its p points adjacent.
Thus K_{p} has $\binom{p}{2}$ lines and is regular of degree $p-1$.
${ }^{a}$ complete subgraph

Definition

$G=(V, E)$ is bipartite if there is a partition $V=V_{1} \cup V_{2}$ into two disjoint sets such that each $e \in E(G)$ intersects both V_{1} and V_{2}.

Special Graphs

Definition

The complete graph or clique ${ }^{a} K_{p}$ has every pair of its p points adjacent.
Thus K_{p} has $\binom{p}{2}$ lines and is regular of degree $p-1$.
${ }^{a}$ complete subgraph

Definition

$G=(V, E)$ is bipartite if there is a partition $V=V_{1} \cup V_{2}$ into two disjoint sets such that each $e \in E(G)$ intersects both V_{1} and V_{2}.

Definition

$K_{n, m}$ is the complete bipartite graph. Take $n+m$ vertices partitioned into a set A of size n and a set B of size m, and include every possible edge between $A \& B$.

Degrees of Vertices

Theorem
For any graph G with 6 points, G or \bar{G} contains a triangle.

Degrees of Vertices

Theorem

For any graph G with 6 points, G or \bar{G} contains a triangle.

Proof.

- Let v be a point of the graph G.
- $\because v$ is adjacent either in G or in \bar{G} to the other five points of G, so, we can assume without loss of generality that there are 3 points u_{1}, u_{2}, u_{3} adjacent to v in G.

Degrees of Vertices

Theorem

For any graph G with 6 points, G or \bar{G} contains a triangle.

Proof.

- Let v be a point of the graph G.
- $\because v$ is adjacent either in G or in \bar{G} to the other five points of G, so, we can assume without loss of generality that there are 3 points u_{1}, u_{2}, u_{3} adjacent to v in G.
- If any 2 of these points are adjacent, then they are 2 points of a triangle whose third point is v.

Degrees of Vertices

Theorem

For any graph G with 6 points, G or \bar{G} contains a triangle.

Proof.

- Let v be a point of the graph G.
- $\because v$ is adjacent either in G or in \bar{G} to the other five points of G, so, we can assume without loss of generality that there are 3 points u_{1}, u_{2}, u_{3} adjacent to v in G.
- If any 2 of these points are adjacent, then they are 2 points of a triangle whose third point is v.
- If no 2 of them are adjacent in G, then u_{1}, u_{2}, u_{3} are the points of a triangle in \bar{G}.

Degrees of Vertices

Theorem

For any graph G with 6 points, G or \bar{G} contains a triangle.

Proof.

- Let v be a point of the graph G.
- $\because v$ is adjacent either in G or in \bar{G} to the other five points of G, so, we can assume without loss of generality that there are 3 points u_{1}, u_{2}, u_{3} adjacent to v in G.
- If any 2 of these points are adjacent, then they are 2 points of a triangle whose third point is v.
- If no 2 of them are adjacent in G, then u_{1}, u_{2}, u_{3} are the points of a triangle in \bar{G}.

Theorem

The maximum number of lines among all p point graphs with no triangles is $\left\lfloor p^{2} / 4\right\rfloor$.

Walk \& Connectedness

Definition

- A walk of a graph G is an alternating sequence of points and lines $v_{0}, x_{1}, v_{1}, \ldots, v_{n-1}, x_{n}, v_{n}$, beginning and ending with points, in which each line is incident with the 2 points immediately preceding and following it.
- This walk joins $v_{0} \& v_{n}$ and may also be denoted as $v_{0} v_{1} v_{2} \ldots v_{n}$ (the lines being evident by context); it is sometimes called a $v_{0}-v_{n}$ walk. It is closed if $v_{0}=v_{n}$ and is open otherwise.

Walk \& Connectedness

Definition

- A walk of a graph G is an alternating sequence of points and lines $v_{0}, x_{1}, v_{1}, \ldots, v_{n-1}, x_{n}, v_{n}$, beginning and ending with points, in which each line is incident with the 2 points immediately preceding and following it.
- This walk joins $v_{0} \& v_{n}$ and may also be denoted as $v_{0} v_{1} v_{2} \ldots v_{n}$ (the lines being evident by context); it is sometimes called a $v_{0}-v_{n}$ walk. It is closed if $v_{0}=v_{n}$ and is open otherwise.
- It is a trail if all the lines are distinct.
- It is a path if all the points (and thus necessarily all the lines) are distinct.
- A closed path is called a cycle/circuit provided its $n(n \geq 3)$ points are distinct. We denote by C_{n} the graph consisting of a cycle with n points and by P_{n} a path with n points.
- A wheel W_{n} is obtained by adding an additional vertex to a cycle C_{n} and connecting this new vertex to each of the n vertices in C_{n} by new edges.

Walk \& Connectedness

Walk \& Connectedness

- $v_{1} v_{2} v_{5} v_{2} v_{3}$ is a walk which is not a trail
- $v_{1} v_{2} v_{5} v_{4} v_{2} v_{3}$ is a trail which is not a path
- $v_{1} v_{2} v_{5} v_{4}$ is a path and $v_{2} v_{4} v_{5} v_{2}$ is a cycle.

Walk \& Connectedness

Definition

A graph is connected if every pair of points are joined by a path.
A maximal connected subgraph of G is called a connected component or simply a component of G.

Thus, a disconnected graph has at least two components.

Walk \& Connectedness

Definition

A graph is connected if every pair of points are joined by a path.
A maximal connected subgraph of G is called a connected component or simply a component of G.

Thus, a disconnected graph has at least two components.

Proposition

Every walk from $u-v$ in G contains a path between u \& v.

Walk \& Connectedness

Definition

A graph is connected if every pair of points are joined by a path.
A maximal connected subgraph of G is called a connected component or simply a component of G.

Thus, a disconnected graph has at least two components.

Proposition

Every walk from $u-v$ in G contains a path between u \& v.

Proposition

A graph with n vertices and m edges has at least $n-m$ connected components.

Walk \& Connectedness

Definition

- The length of a walk $v_{0} \cdots v_{n}$ is n, the number of occurrences of lines in it.
- The girth of a graph G, denoted $g(G)$ is the length of a shortest cycle (if any) in G.
- The circumference of a graph $G, c(G)$ is the length of any longest cycle (if any).
- A shortest u - v path is called a geodesic.
- The diameter $d(G)$ of a connected graph G is the length of any longest geodesic.

Walk \& Connectedness

Walk \& Connectedness

- The graph G has girth

Walk \& Connectedness

- The graph G has girth $g=3$, circumference

Walk \& Connectedness

- The graph G has girth $g=3$, circumference $c=4$, and diameter $d=2$.

Walk \& Connectedness

- The distance $d(u, v)$ between two points $u \& v$ in G is the length of a shortest path joining them (if any); otherwise $d(u, v)=\infty$.
- In a connected graph, distance is a metric;

Walk \& Connectedness

- The distance $d(u, v)$ between two points $u \& v$ in G is the length of a shortest path joining them (if any); otherwise $d(u, v)=\infty$.
- In a connected graph, distance is a metric; i.e., for all points $u, v, \& w$,

$$
d: V \times V \rightarrow \mathbb{R}
$$

such that
(1) $d(u, v) \geq 0$, with $d(u, v)=0$ iff $u=v$
(1) $d(u, v)=d(v, u)$
(II) $d(u, v) \leq d(u, w)+d(w, v)$

Walk \& Connectedness

Theorem
 A graph is bipartite iff all its cycles are even.

Walk \& Connectedness

Theorem

A graph is bipartite iff all its cycles are even.

Proof.

- If G is a bipartite, then its point set V can be partitioned into two sets $V_{1} \& V_{2}$ so that every line of G joins a point of V_{1} with a point of V_{2}.

Walk \& Connectedness

Theorem

A graph is bipartite iff all its cycles are even.

Proof.

- If G is a bipartite, then its point set V can be partitioned into two sets $V_{1} \& V_{2}$ so that every line of G joins a point of V_{1} with a point of V_{2}.
- Thus every cycle $v_{1} v_{2} \cdots v_{n} v_{1}$ in G necessarily has its oddly subscripted points in V_{1} (say), and the others in V_{2}, so that its length n is even.

Walk \& Connectedness

Theorem

A graph is bipartite iff all its cycles are even.

Proof.

- For the converse, now we assume, without loss of generality, that G is connected.
- Take any point $v_{1} \in V$, and let $v_{1} \in V_{1}$ and all points at even distance from v_{1}

Walk \& Connectedness

Theorem

A graph is bipartite iff all its cycles are even.

Proof.

- For the converse, now we assume, without loss of generality, that G is connected.
- Take any point $v_{1} \in V$, and let $v_{1} \in V_{1}$ and all points at even distance from v_{1} while $V_{2}=V \backslash V_{1}$.
- Since all the cycles of G are even, every line of G joins a point of V_{1} with a point of V_{2}.

Walk \& Connectedness

Theorem

A graph is bipartite iff all its cycles are even.

Proof.

- For the converse, now we assume, without loss of generality, that G is connected.
- Take any point $v_{1} \in V$, and let $v_{1} \in V_{1}$ and all points at even distance from v_{1} while $V_{2}=V \backslash V_{1}$.
- Since all the cycles of G are even, every line of G joins a point of V_{1} with a point of V_{2}.
- For suppose there is a line $u v$ joining 2 points of V_{1}. Then the union of geodesics from v_{1} to v and from v_{1} to u together with the line $u v$ contains an odd cycle, a contradiction.

Outline

Block

Definition

- A cutpoint of a graph is one whose removal increases the number of components.

Thus, if v is a cutpoint of a connected graph G, then $G \backslash\{v\}$ is disconnected.

Block

Definition

- A cutpoint of a graph is one whose removal increases the number of components.

Thus, if v is a cutpoint of a connected graph G, then $G \backslash\{v\}$ is disconnected.

- A bridge is a line whose removal increases the number of components.

Block

Definition

- A cutpoint of a graph is one whose removal increases the number of components.

Thus, if v is a cutpoint of a connected graph G, then $G \backslash\{v\}$ is disconnected.

- A bridge is a line whose removal increases the number of components.
- A nonseparable graph is connected, nontrivial, and has no cutpoints.
- A block of a graph is a maximal nonseparable subgraph. If G is nonseparable, then G itself is often called a block.

Block

Block

Figure: A graph and its blocks

Block

Figure: A graph and its blocks
v is a cutpoint and x is a bridge

July 20, 2023
$48 / 1$

Block

Theorem

Let v be a point of a connected graph G. The following statements are equivalent:
(1) v is a cutpoint of G.
(1) There exist points u \& w distinct from $v s / t v$ is on every $u-w$ path.
(10) There exists a partition of the set of points $V \backslash\{v\}$ into subsets $U \& W s / t$ for any points $u \in U$ and $w \in W$, the point v is on every $u-w$ path.

Block

Theorem

Let x be a line of a connected graph G. The following statements are equivalent:
(1) x is a bridge of G.
(1) x is not on any cycle of G.
(II) There exist points u \& v of $G s / t$ the line x is on every path joining u and v.
(®) There exists a partition of V into subsets $U \& W$ s/t for any points $u \in U$ and $w \in W$, the line x is on every path joining u and w.

Block

Theorem

Let G be a connected graph with at least 3 points. The following statements are equivalent:
(1) G is a block.
(II) Every 2 points of G lie on a common cycle.
(iD) Every point and line of G lie on a common cycle.
(0) Every 2 lines of G lie on a common cycle.
(0) Given 2 points and one line of G, there is a path joining the points which contains the line.
(1) For every 3 distinct points of G, there is a path joining any 2 of them which contains the third.
(IT) For every 3 distinct points of G, there is a path joining any 2 of them which does not contain the third.

Outline

Definition

Definition

- A graph is acyclic if it has no cycles/circuits.
- A tree is a connected acyclic graph.
- Any graph without cycles is a forest, thus the components of a forest are trees.

Example of Trees

Example

Example of Trees

Example

- G_{1} and G_{2} are trees.
- G_{3} is not a tree because e, b, a, d, e is a circuit in this graph.
- G_{4} is not a tree because it is not connected.

Example of Trees

Example

- There are 23 different trees with 8 points

Example of a Forest

Example

- This is one graph with three connected components

Example of a Forest

Example

- This is one graph with three connected components- forest

Characterization of Trees

Theorem

The following statements are equivalent for a graph G :
(1) G is a tree.
(2) Every two points of G are joined by a unique path.
(3) G is connected and $p=q+1$.
(a) G is acyclic and $p=q+1$.
(5) G is acyclic and if any 2 non-adjacent points of G are joined by a line x, then $G+x$ has exactly one cycle.
(7) G is connected, is not K_{p} for $p \geq 3$, and if any 2 non-adjacent points of G are joined by a line x, then $G+x$ has exactly one cycle.
(7) G is not $K_{3} \cup K_{1}$ or $K_{3} \cup K_{2}, p=q+1$, and if any 2 non-adjacent points of G are joined by a line x, then $G+x$ has exactly one cycle.

Characterization of Trees

Proof.

(2) \Rightarrow (3)

- Clearly G is connected.
- We have to prove that $p=q+1$ (for that we will use induction).
- It is obvious for connected graphs of 1 or 2 points.
- Assume it is true for graphs with fewer than p points.
- If G has p points, the removal of any line of G disconnects G, because of the uniqueness of paths, and in fact this new graph will have exactly two components.
- By the induction hypothesis each component has one more point than line.
- Thus the total number of lines in G must be $p-1$.

Characterization of Trees

Proof.

(3) \Rightarrow (4)

- Assume that G has a cycle of length n.
- Then there are n points and n lines on the cycle and for each of the $p-n$ points not on the cycle, there is an incident line on a geodesic to a point of the cycle.
- Each such line is different, so $q \geq p$, which is a contradiction.

Characterization of Trees

Proof.

(4) \Rightarrow (5)

- Since G is acyclic, each component of G is a tree.
- If there are k components, then, since each one has 1 more point than line, $p=q+k$, so $k=1$ and G is connected.
- Thus G is a tree and there is exactly one path connecting any two points of G.
- If we add a line $u v$ to G, that line, together with the unique path in G joining $u \& v$, forms a cycle.
- The cycle is unique because the path is unique.

Characterization of Trees

Proof.

(6) \Rightarrow (7)

- We prove that every two points of G are joined by a unique path and thus, $p=q+1$.
- Certainly every 2 points of G are joined by some path.
- If 2 points of G are joined by 2 paths, then G has a cycle.
- This cycle cannot have 4 or more points because, if it did, then we could produce more than one cycle in $G+x$ by taking x joining 2 non-adjacent points on the cycle.
- So the cycle is K_{3}, which must be a proper subgraph of G since by hypothesis G is not complete with $p \geq 3$.
- Since G is connected, we may assume there is another point in G which is joined to a point of this K_{3}.
- Then it is clear that if any line can be added to G, then one may be added so as to form at least two cycles in $G+x$.
- If no more lines may be added, so that the second condition on G is trivially satisfied, then G is K_{p} with $p \geq 3-$ a contradiction.

Characterization of Trees

Proof.

(7) \Rightarrow (1)

- If G has a cycle, that cycle must be a triangle which is a component of G.
- This component has 3 points and 3 lines.
- All other components of G must be trees and, in order to make $p=q+1$, there can be only one other component.
- If this tree contains a path of length 2 , it will be possible to add a line x to G and obtain two cycles in $G+x$. Thus this tree must be either K_{1} or K_{2}.
- So G must be $K_{3} \cup K_{1}$ or $K_{3} \cup K_{2}$, which are the graphs which have been excluded. Thus G is acyclic.
- But if G is acyclic and $p=q+1$, then G is connected. So G is a tree.

Characterization of Trees

Corollary

Every nontrivial tree has at least two endpoints.

Characterization of Trees

Corollary

Every nontrivial tree has at least two endpoints.

Proof.

- A nontrivial tree has $\sum d_{i}=2 q=2(p-1)$

Characterization of Trees

Corollary

Every nontrivial tree has at least two endpoints.

Proof.

- A nontrivial tree has $\sum d_{i}=2 q=2(p-1)$
- There are at least two points with degree less than 2.

Rooted Trees

Definition

A rooted tree is a tree in which one vertex has been designated as the root and every edge is directed away from the root.

An unrooted tree is converted into different rooted trees when different vertices are chosen as the root.

Rooted Trees

Definition

A rooted tree is a tree in which one vertex has been designated as the root and every edge is directed away from the root.

An unrooted tree is converted into different rooted trees when different vertices are chosen as the root.

With root c

Terminology for Rooted Trees

Definition

- If v is a vertex of a rooted tree other than the root, the parent of v is the! vertex u s / t there is a directed edge from u to v. When u is a parent of v, v is called a child of u. Vertices with the same parent are called siblings.

Terminology for Rooted Trees

Definition

- If v is a vertex of a rooted tree other than the root, the parent of v is the ! vertex u s / t there is a directed edge from u to v. When u is a parent of v, v is called a child of u. Vertices with the same parent are called siblings.
- The ancestors of a vertex are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root. The descendants of a vertex v are those vertices that have v as an ancestor.

Terminology for Rooted Trees

Definition

- If v is a vertex of a rooted tree other than the root, the parent of v is the ! vertex u s / t there is a directed edge from u to v. When u is a parent of v, v is called a child of u. Vertices with the same parent are called siblings.
- The ancestors of a vertex are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root. The descendants of a vertex v are those vertices that have v as an ancestor.
- A vertex of a rooted tree with no children is called a leaf. Vertices that have children are called internal vertices.

Terminology for Rooted Trees

Definition

- If v is a vertex of a rooted tree other than the root, the parent of v is the ! vertex u s / t there is a directed edge from u to v. When u is a parent of v, v is called a child of u. Vertices with the same parent are called siblings.
- The ancestors of a vertex are the vertices in the path from the root to this vertex, excluding the vertex itself and including the root. The descendants of a vertex v are those vertices that have v as an ancestor.
- A vertex of a rooted tree with no children is called a leaf. Vertices that have children are called internal vertices.

If a is a vertex in a tree, the subtree with a as its root is the subgraph of the tree consisting of a and its descendants and all edges incident to these descendants.

Example of Rooted Trees

- The parent of c is b. The children of g are $h, i, \& j$. The siblings of h are $i \& j$. The ancestors of e are $c, b, \& a$.
The descendants of b are $c, d, \& e$.
- The internal vertices are $a, b, c, g, h, \& j$.

The leaves are $d, e, f, i, k, l, \& m$.

m-ary Rooted Trees

Definition

- A rooted tree is called an m-ary tree if every internal vertex has no more than m children.
- The tree is called a full m-ary tree if every internal vertex has exactly m children.
- An m-ary tree with $m=2$ is called a binary tree.

Example of m-ary Rooted Trees

Example of m-ary Rooted Trees

- T_{1} is a full binary tree because each of its internal vertices has 2 children.
- T_{2} is a full 3-ary tree because each of its internal vertices has 3 children.
- $\operatorname{In} T_{3}$ each internal vertex has 5 children, so T_{3} is a full 5 -ary tree.
- T_{4} is not a full m-ary tree for any m because some of its internal vertices have 2 children and others have 3 children.

Example of m-ary Rooted Trees

Exercise

How many steps do you require to find $x_{1}+x_{2}+x_{3}+\cdots+x_{8}$?

Example of m-ary Rooted Trees

Exercise

How many steps do you require to find $x_{1}+x_{2}+x_{3}+\cdots+x_{8}$?

Example of m-ary Rooted Trees

Exercise

How many steps do you require to find $x_{1}+x_{2}+x_{3}+\cdots+x_{8}$?

- We require 3 steps using parallel computation

Counting Vertices of m-ary Rooted Trees

Theorem

A full m-ary tree with i internal vertices contains $n=m i+1$ vertices

Counting Vertices of m-ary Rooted Trees

Theorem

A full m-ary tree with i internal vertices contains $n=m i+1$ vertices

Proof.

- Every vertex, except the root, is the child of an internal vertex.
- There are mi vertices in the tree other than the root,

Counting Vertices of m-ary Rooted Trees

Theorem

A full m-ary tree with i internal vertices contains $n=m i+1$ vertices

Proof.

- Every vertex, except the root, is the child of an internal vertex.
- There are $m i$ vertices in the tree other than the root, \because each of the i internal vertices has m children.
- \therefore the tree contains $n=m i+1$ vertices.

Counting Vertices of m-ary Rooted Trees

Theorem

A full m-ary tree with
(1) n vertices has $i=\frac{n-1}{m}$ internal vertices and $\ell=\frac{(m-1) n+1}{m}$ leaves,
(2) i internal vertices has $n=m i+1$ vertices and $\ell=(m-1) i+1$ leaves,
(3) ℓ leaves has $n=\frac{m \ell-1}{m-1}$ vertices and $i=\frac{\ell-1}{m-1}$ internal vertices.

Counting Vertices of m-ary Rooted Trees

Proof.

- Let n denote the number of vertices, i the number of internal vertices, and ℓ the number of leaves.
- Then we have $n=m i+1$ and $n=\ell+i$
- $\Rightarrow i=\frac{n-1}{m}$
- $\Rightarrow \ell=n-i$
$\Rightarrow \ell=n-\frac{n-1}{m}$
$\Rightarrow \ell=\frac{m n-n+1}{m}$
$\Rightarrow \ell=\frac{(m-1) n+1}{m}$

Level of Vertices and Height of Trees

- When working with trees, we often want to have rooted trees where the subtrees at each vertex contain paths of approximately the same length.

Level of Vertices and Height of Trees

- When working with trees, we often want to have rooted trees where the subtrees at each vertex contain paths of approximately the same length.

Definition

- The level of a vertex v in a rooted tree is the length of the! path from the root to this vertex.
- The height of a rooted tree is the maximum of the levels of the vertices.

Balanced m-ary Trees

Definition

A rooted m-ary tree of height h is balanced if all leaves are at levels h or h-1.

Balanced m-ary Trees

Definition

A rooted m-ary tree of height h is balanced if all leaves are at levels h or $h-1$.

- T_{1} is balanced, because all its leaves are at levels 3 and 4 .
- T_{2} is not balanced, because it has leaves at levels 2,3 , and 4 .
- T_{3} is balanced, because all its leaves are at level 3 .

Bound for the Number of Leaves

Theorem

There are at most m^{h} leaves in an m-ary tree of height h.

Proof.

Apply mathematical induction on the height, to prove the theorem.

Outline

Eulerian Graphs

Definition

Given a graph G, if it is possible to find a walk that traverses each line exactly once, goes through all points, and ends at the starting point, we call G is Eulerian.

Thus, an Eulerian graph has an Eulerian trail - a closed trail containing all points and lines.

Clearly, an Eulerian graph must be connected.

Eulerian Graphs

Definition

Given a graph G, if it is possible to find a walk that traverses each line exactly once, goes through all points, and ends at the starting point, we call G is Eulerian.

Thus, an Eulerian graph has an Eulerian trail - a closed trail containing all points and lines.

Clearly, an Eulerian graph must be connected.

Problem (Königsberg Bridge Problem)

Begin at any of the four land areas $A, B, C, \& D$, walk across each bridge exactly once and return to the starting point.

Eulerian Graphs

Example

Figure: G_{1}
G_{2}
G_{3}

Eulerian Graphs

Example

- The graph G_{1} has an Eulerian closed trail

Eulerian Graphs

Example

Figure: G_{1}

- The graph G_{1} has an Eulerian closed trail (e.g., a, e, c, d,e,b,a).
- Neither G_{2} nor G_{3} has an Eulerian closed trail.
- Note that G_{3} has an Eulerian (not closed) trail (e.g., $a, c, d, e, b, d, a, b)$, but there is no Euler trail in G_{2}.

Eulerian Graphs

Theorem

The following statements are equivalent for a connected graph G :
(1) G is Eulerian.
(1) Every point of G has even degree.
(IIT The set of lines of G can be partitioned into cycles.

Eulerian Graphs

Theorem

The following statements are equivalent for a connected graph G :
(1) G is Eulerian.
(1) Every point of G has even degree.
(IIT The set of lines of G can be partitioned into cycles.

Proof.

- (i) \Rightarrow (ii) Let T be an Eulerian trail in G.

Each occurrence of a given point in T contributes 2 to the degree of that point, and since each line of G appears exactly once in T, every point must have even degree.

Eulerian Graphs

Proof.

- (ii) \Rightarrow (iii) Since G is connected and nontrivial, every point has degree at least 2, so G contains a cycle Z.

The removal of the lines of Z results in a spanning subgraph G_{1} in which every point still has even degree.

If G_{1} has no lines, then (iii) already holds; otherwise, a repetition of the argument applied to G_{1} results in a graph G_{2} in which again all points are even, etc.

When a totally disconnected graph G_{n} is obtained, we have a partition of the lines of G into n cycles.

Eulerian Graphs

Proof.

- (ii) \Rightarrow (iii) Since G is connected and nontrivial, every point has degree at least 2 , so G contains a cycle Z.

The removal of the lines of Z results in a spanning subgraph G_{1} in which every point still has even degree.

If G_{1} has no lines, then (iii) already holds; otherwise, a repetition of the argument applied to G_{1} results in a graph G_{2} in which again all points are even, etc.

When a totally disconnected graph G_{n} is obtained, we have a partition of the lines of G into n cycles.

- (iii) $\Rightarrow(i)$ is an exercise.

Eulerian Graphs

Example

Figure: An Eulerian Graph

Hamilton Paths and Circuits

Definition

A simple path in a graph G that passes through every vertex exactly once is called a Hamilton ${ }^{a}$ path.

A simple circuit in a graph G that passes through every vertex exactly once is called a Hamilton circuit.

[^3]
Hamiltonian Graphs

Example

Hamiltonian Graphs

Example

- G_{1} has a Hamilton circuit: a, b, c, d, e, a.
- G_{2} does not have a Hamilton circuit, but does have a Hamilton path: a, b, c, d.
- G_{3} does not have a Hamilton circuit, or a Hamilton path.

Necessary Conditions for Hamiltonian Circuits

- Unlike for an Eulerian circuit, no simple necessary and sufficient conditions are known for the existence of a Hamiton circuit.
- However, there are some useful necessary conditions.

Necessary Conditions for Hamiltonian Circuits

- Unlike for an Eulerian circuit, no simple necessary and sufficient conditions are known for the existence of a Hamiton circuit.
- However, there are some useful necessary conditions.

Theorem (Dirac's Theorem)

If G is a simple graph with $n \geq 3$ vertices s / t the degree of every vertex in G is $\geq \frac{n}{2}$, then G has a Hamilton circuit.

Necessary Conditions for Hamiltonian Circuits

- Unlike for an Eulerian circuit, no simple necessary and sufficient conditions are known for the existence of a Hamiton circuit.
- However, there are some useful necessary conditions.

Theorem (Dirac's Theorem)

If G is a simple graph with $n \geq 3$ vertices s / t the degree of every vertex in G is $\geq \frac{n}{2}$, then G has a Hamilton circuit.

Theorem (Ore's Theorem)

If G is a simple graph with $n \geq 3$ vertices $s / t \operatorname{deg}(u)+\operatorname{deg}(v) \geq n$ for every pair of non-adjacent vertices, then G has a Hamilton circuit.

Applications of Hamiltonian Paths and Circuits

- The famous travelling salesperson problem (TSP) asks for the shortest route a travelling salesperson should take to visit a set of cities. This problem reduces to finding a Hamiltonian circuit s/t the total sum of the weights of its edges is as small as possible.

Applications of Hamiltonian Paths and Circuits

- The famous travelling salesperson problem (TSP) asks for the shortest route a travelling salesperson should take to visit a set of cities. This problem reduces to finding a Hamiltonian circuit s/t the total sum of the weights of its edges is as small as possible.
- Lot of applications of Eulerian and Hamiltonian graph are there in the area of puzzles and games.

The Traveling Salesman Problem (TSP)

- Consider the travelling salesman who wants to visit a number of cities once and then return home.

The Traveling Salesman Problem (TSP)

- Consider the travelling salesman who wants to visit a number of cities once and then return home.

Problem

(1) The TSP can be reduced to a problem of finding Hamiltonian cycle.
Whether a given graph has a Hamiltonian cycle.

The Traveling Salesman Problem (TSP)

- Consider the travelling salesman who wants to visit a number of cities once and then return home.

Problem

(1) The TSP can be reduced to a problem of finding Hamiltonian cycle.
Whether a given graph has a Hamiltonian cycle.
(2) TSP is to find a Hamiltonian cycle with minimum total edge weight in a weighted complete graph.

The Traveling Salesman Problem (TSP)

- Consider the travelling salesman who wants to visit a number of cities once and then return home.

Problem

(1) The TSP can be reduced to a problem of finding Hamiltonian cycle.
Whether a given graph has a Hamiltonian cycle.
(2) TSP is to find a Hamiltonian cycle with minimum total edge weight in a weighted complete graph. - combinatorial optimization

References

Owen D. Byer, Deirdre L. Smeltzer, and Kenneth L. Wantz, Journey into Discrete Mathematics, MAA Press, 2018.
B
Frank Harary,
Graph Theory, CRC Press, 2018.
© Gerard O'Regan,
Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications, Springer, 2016.
θ Kenneth H. Rosen,
Discrete Mathematics and Its Applications, McGraw-Hill, 2019.

The End

Thanks a lot for your attention!

[^0]: ${ }^{1}$ The 4-colour theorem states that given any map it is possible to colour the regions, of the map with no more than four colours such that no two adjacent regions havelthes same colour.

[^1]: ${ }^{a}$ sometimes called valency

[^2]: ${ }^{a}$ complete subgraph

[^3]: ${ }^{\text {a }}$ Sir William Hamilton suggested the class of graphs which bears his name when he asked for the construction of a cycle containing every vertex of a dodecahedron.

