
Introduction to Number Theory

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow
ddey@iiitl.ac.in

July 20, 2023

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 1 / 138



Disclaimers

1
All the pictures used in this presentation are taken from freely available
websites.

2
If there is a reference on a slide all of the information on that slide is
attributable to that source whether quotation marks are used or not.
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What is Number Theory?

NT
Number theory is concerned mainly with the study of the properties of
the integers

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . , },

particularly the positive integers Z+ or set of natural numbers N

= {1, 2, 3, . . .}.
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Properties of Natural Numbers

Example

For example all positive integers can be classified into a variety of
different types:

(i) Unit: 1
(ii) Prime numbers: 2, 3, 5, 7, 11, 13, 17, 19, . . .
(iii) Composite numbers: 4, 6, 8, 9, 10, 12, 14, 15, . . .

(a) Odd: 1, 3, 5, 7, 9, 11, . . .
(b) Even: 2, 4, 6, 8, 10, . . .
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Properties of Natural Numbers

Example
The natural numbers have been separated into a variety of different
types

Square: 1, 4, 9, 16, 25, 36, . . .

Cube: 1, 8, 27, 64, 125, . . .

Fibonacci: 1, 1, 2, 3, 5, 8, 13, 21, . . .

Perfect: 6, 28, 496, 8128, . . .

Triangular: 1, 3, 6, 10, 15, 21, . . .
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Number Theoretic Questions

The main goal of number theory is to find interesting and
unexpected relationships between different sorts of numbers and
to prove that those relations are true.

Can the sum of two squares be a square?

Yes
Can the sum of two cubes be a cube? [Fermat’s Last Theorem]

No
Are there infinitely many prime numbers?
Are there infinitely many primes of the form 1 mod 4?
Are there infinitely many primes of the form 3 mod 4?

Yes
Which numbers are sums of two squares?
Whether there are any triangular numbers that are also square
numbers 36
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Famous Quotations Related to Number Theory

Quotation
The great mathematician Carl Friedrich Gauss called this subject
‘arithmetic’ and he said:

“Mathematics is the queen of sciences and arithmetic the queen of
mathematics."
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Famous Quotations Related to Number Theory

Prof G. H. Hardy

In the 1st quotation Prof Hardy is speaking of the famous Indian Mathematician
Ramanujan. This is the source of the often made statement that Ramanujan knew
each integer personally.

(i) I remember once going to see him when he was lying ill at Putney. I had
ridden in taxi cab number 1729 and remarked that number seemed to
me rather dull one and that I hoped it was not an unfavorable omen.“No",
he replied it is a very interesting number; it is the smallest number
expressible as the sum of cubes of two integers in two different ways.

(ii) Pure mathematics is on the whole distinctly more useful than applied.
For what is useful above all is technique and mathematical technique is
taught mainly through pure mathematics
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A Mathematician’s Apology

G. H. Hardy wrote it in November 1940a.

Number theorists may be justified in rejoicing that there is one
science, at any rate, and that their own, whose very remoteness
from ordinary human activities should keep it gentle and clean.
Hardy was especially concerned that number theory not be used
in warfare.
He was so proud and so humble.

Number theory underlies modern cryptography which is what
makes secure on-line communication possible.
Secure communication is of course crucial in war.

aA Mathematician’s Apology
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Motivation

NT
Key ideas in number theory include divisibility and the primality of
integers.

Representations of integers, including binary and hexadecimal
representations, are part of number theory.

Number theory has long been studied because of the beauty of its
ideas, its accessibility, and its wealth of open questions.

Mathematicians have long considered number theory to be pure
mathematics, but it has important applications to computer
science and cryptography.
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Computational Number Theory

Computational Number Theory
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Outline

1 Divisibility and Modular Arithmetic

2 Integer Representations and Algorithms

3 Primes and Greatest Common Divisors

4 Prime Numbers

5 Primes Generation
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The Floor & Ceiling of a Real Number

Definition

1 The floor or the greatest integer function is defined as

bxc = max{n ∈ Z : n ≤ x}

2 The ceiling or the least integer function is defined as

dxe = min{n ∈ Z : n ≥ x}

3 The nearest integer function is defined as

bxe = bx + 1/2c
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Divisibility and Modular Arithmetic

Outline

1 Divisibility and Modular Arithmetic

2 Integer Representations and Algorithms

3 Primes and Greatest Common Divisors

4 Prime Numbers

5 Primes Generation
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Divisibility and Modular Arithmetic

Division

Definition
If a & b are integers with a , 0, then a divides b if ∃ an integer c s/t
b = ac.

When a divides b we say that a is a factor or divisor of b and that
b is a multiple of a.

The notation a | b denotes that a divides b.

If a | b, then b
a is an integer.

If a does not divide b, we write a - b.
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Divisibility and Modular Arithmetic

Properties of Divisibility

Theorem
Let a, b, & c be integers, where a , 0.

(i) If a | b and a | c, then a | (b + c);
(ii) If a | b, then a | bc for all integers c;
(iii) If a | b and b | c, then a | c.

Corollary
If a, b, & c are integers, where a , 0, s/t a | b and a | c, then

a | (mb + nc)

whenever m & n are integers.
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Divisibility and Modular Arithmetic

Division Algorithm

When an integer is divided by a positive integer, there is a
quotient and a remainder. This is traditionally called the “Division
Algorithm", but is really a theorem.

Theorem
If a, d ∈ Z & d > 0, then ∃ ! q & r ∈ Z s/t

a = q.d + r, where 0 ≤ r < d.

d is called the divisor, a is called the dividend, q is called the
quotient and r is called the remainder.

We define div and mod as
q = a div d and r ≡ a mod d
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Divisibility and Modular Arithmetic

Congruence Relation

Definition
If a, b ∈ Z and m is a positive integer, then a is congruent to b modulo
m if m | (a − b).

The notation a ≡ b mod m says that a is congruent to b modulo m.
We say that a ≡ b mod m is a congruence and that m is its
modulus.
Two integers are congruent mod m iff they have the same
remainder when divided by m.
If a is not congruent to b modulo m, we write

a . b mod m
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Divisibility and Modular Arithmetic

Congruence Relation

Example

Exercise
Find the modulus.
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Divisibility and Modular Arithmetic
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Divisibility and Modular Arithmetic

Congruence Relation

Theorem
Let m be a positive integer. The integers a & b are congruent modulo m
iff there is an integer k s/t a = b + km.

Proof.
If a ≡ b mod m, then (by the definition) we have m | (a − b). Hence,
there is an integer k s/t a − b = km and equivalently a = b + km.

Conversely, if there is an integer k s/t a = b + km, then km = a − b.
Hence, m | (a − b) and a ≡ b mod m.

�
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Divisibility and Modular Arithmetic

Congruence Relation

The use of mod in a ≡ b mod m and a mod m = b are different.
a ≡ b mod m is a relation on the set of integers.
In a mod m = b, the notation mod denotes a function.

The relationship between these notations is made clear in the
following theorem.

Theorem
Let a & b be integers, and let m be a positive integer. Then

a ≡ b mod m

iff

a mod m = b mod m.
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Divisibility and Modular Arithmetic

Congruences of Sums and Products

Theorem

Let m be a positive integer. If a ≡ b mod m and c ≡ d mod m, then

(a + c) ≡ (b + d) mod m and ac ≡ bd mod m

Proof.

∵ a ≡ b mod m and c ≡ d mod m, there are integers s & t with b = a + sm and
d = c + tm.

Therefore,

b + d = (a + sm) + (c + tm) = (a + c) + m(s + t) and
bd = (a + sm)(c + tm) = ac + m(at + cs + stm).

Hence, (a + c) ≡ (b + d) mod m and ac ≡ bd mod m.

�
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Divisibility and Modular Arithmetic

Algebraic Manipulation of Congruences

Multiplying both sides of a valid congruence by an integer
preserves validity.

If a ≡ b mod m holds then c.a ≡ c.b mod m, where c is any
integer.

Adding an integer to both sides of a valid congruence preserves
validity.

If a ≡ b mod m holds then (c + a) ≡ (c + b) mod m, where c is
any integer.
Dividing a congruence by an integer does not always produce a
valid congruence.
E.g., 6 ≡ 15 mod 9; however, 6

3 .
15
3 mod 9
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Divisibility and Modular Arithmetic

Computing the mod m Function of Products and
Sums

Corollary
Let m be a positive integer and let a & b be integers. Then

(a + b) mod m = ((a mod m) + (b mod m)) mod m
and

ab mod m = ((a mod m)(b mod m)) mod m.

Let Zm = {0, 1, . . . ,m − 1}

The operation +m is defined as a +m b = (a + b) mod m.
The operation .m is defined as a.mb = (a.b) mod m.
(Zm,+m, ·m) forms a commutative ring for any m ∈ Z and m > 0

(Zp,+p, ·p) forms a field for any prime p
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Integer Representations and Algorithms

Outline

1 Divisibility and Modular Arithmetic

2 Integer Representations and Algorithms

3 Primes and Greatest Common Divisors

4 Prime Numbers

5 Primes Generation
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Integer Representations and Algorithms

Representations of a Number

(1234)10 =

1.103 + 2.102 + 3.101 + 4.100 to the base 10 – decimal

(1234)10 = (10011010010)2

1.210 + 0.29 + 0.28 + 1.27 + 1.26 + 0.25 + 1.24 + 0.23 + 0.22 + 1.21 + 0.20

to the base 2 – binary

(1234)10 = (2322)8 = 2.83 + 3.82 + 2.81 + 2 to the base 8 – octal

(1234)10 = (4D2)16 = 4.162 + D.161 + 2.160 to the base 16 –
hexadecimal

(BAD)26 = (679)10 = B.262 + A.26 + 260
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Integer Representations and Algorithms

Revisit

Computational complexity theory

is the study of the minimal
resources needed to solve computational problems.

Two fundamental questions:
(i) Is a problem P intrinsically “easy" or “difficult" to solve?

(ii) Given two problems, P1 and P2, which is easier to solve?

Running time - the number of basic (or primitive) operations (or
steps) taken by an algorithm.

The running time of an algorithm usually depends on the size of the input.

Space complexity - to measure the amount of temporary storage
used when performing a computational task.
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Integer Representations and Algorithms

Base b Representations

We can use positive integer b greater than 1 as a base to
represent any number

Theorem
Let b, n ∈ Z and b > 1, & n > 0. Then n can be expressed uniquely as:

n = akbk + ak−1bk−1 + . . . + a1b + a0

where k ∈ Z, k ≥ 0 & a0, a1, . . . , ak are nonnegative integers < b, and
ak , 0. The a j, j = 0, . . . , k are called the base-b digits of the
representation.

The representation of n is called the base b expansion of n and is
denoted by (akak−1 . . . a1a0)b.
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Integer Representations and Algorithms

Representation of a Number

Numbers in different bases

Any number n, bk−1 ≤ n < bk is a k-digit number to the base b.
Number of digits

=
[
logb n

]
+ 1.

Number of bits

=
[
log2 n

]
+ 1 ≈ [1.44 × ln n] + 1.
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Integer Representations and Algorithms

Size of Some Mathematical Objects

Example

1 If A =
[
aij

]
r×s

is a matrix with r rows, s columns, where aij ∈ Zn,
then the size of A

= rs
(
1 +

[
log2 n

])
bits.

2 If f is a polynomial of degree d, over Zn, then the size of f

= (d + 1)
(
1 +

[
log2 n

])
bits.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 32 / 138



Integer Representations and Algorithms

Size of Some Mathematical Objects

Example

1 If A =
[
aij

]
r×s

is a matrix with r rows, s columns, where aij ∈ Zn,
then the size of A

= rs
(
1 +

[
log2 n

])
bits.

2 If f is a polynomial of degree d, over Zn, then the size of f

= (d + 1)
(
1 +

[
log2 n

])
bits.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 32 / 138



Integer Representations and Algorithms

Size of Some Mathematical Objects

Example

1 If A =
[
aij

]
r×s

is a matrix with r rows, s columns, where aij ∈ Zn,
then the size of A

= rs
(
1 +

[
log2 n

])
bits.

2 If f is a polynomial of degree d, over Zn, then the size of f

= (d + 1)
(
1 +

[
log2 n

])
bits.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 32 / 138



Integer Representations and Algorithms

Size of Some Mathematical Objects

Example

1 If A =
[
aij

]
r×s

is a matrix with r rows, s columns, where aij ∈ Zn,
then the size of A

= rs
(
1 +

[
log2 n

])
bits.

2 If f is a polynomial of degree d, over Zn, then the size of f

= (d + 1)
(
1 +

[
log2 n

])
bits.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 32 / 138



Integer Representations and Algorithms

Algorithm: Constructing Base b Expansions

Result: (ak−1 . . . a1a0)b is base b expansion of n
procedure base b expansion;
q := n;
k := 0;
while q , 0 do

ak := q mod b;
q← q div b;
k ← k + 1

end
return (ak−1 . . . a1a0)

Algorithm 1: Base Conversion
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Integer Representations and Algorithms

Number of Steps for Doing Arithmetic

Number of steps required to add 2 integers a & b

Input: integers a ≥ b ≥ 0

Output: a + b

Algorithm:

while (b , 0){
a = a + +

b = b − −
}

output a

Number of operations = 3b + 1
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Integer Representations and Algorithms

Bit Operation for Doing Arithmetic

Number of bit operations required to add 2 k-bit integers n & m

i. Look at the top and bottom bit and also at whether there’s a carry above
the top bit.

ii. If both bits are 0 and there is no carry, then put down 0.
iii. If either both bits are 0 and there is a carry; or one of the bits is 0, the

other is 1 and there is no carry, then put down 1.
iv. If either one of the bits is 0, the other is 1, and there is a carry; or both

bits are 1 and there is no carry then put down 0, put a carry in the next
column.

v. If both bits are 1 and there is a carry, then put down 1, put a carry in the
next column.

Time(n + m) = k-bit operations.
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Integer Representations and Algorithms

Algorithm: Addition of Integers

Number of bit operations required to add 2 k-bit integers n & m

Input: n = nknk−1 · · · n2n1 & m = mkmk−1 · · ·m2m1

Output: n + m in binary.

Algorithm: c← 0

for(i = 1 to k){
if sum(ni,mi, c) = 1 or 3

then di ← 1
else di ← 0

if sum(ni,mi, c) ≥ 2
then c← 1
else c← 0}

if c = 1 then output 1dkdk−1 · · · d2d1

else output dkdk−1 · · · d2d1.
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Integer Representations and Algorithms

Bit Operation for Doing Arithmetic

Number of bit operations required to multiply a k-bit integer n by
an `-bit integer m

i. at most ` rows can be obtained

ii. each row consists of a copy of n shifted to the left a certain distance

iii. suppose there are `′ ≤ ` rows.

iv. multiplication task can be broken down into `′ − 1 additions

v. moving down from the 2nd row to the `′th row, adding each new row
to the partial sum of all of the earlier rows

vi. each addition takes at most k-bit operations

vii. total number of bit operations is at most ` × k.

Time(n × m) < k`-bit operations.
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Integer Representations and Algorithms

Bit Operation for Doing Arithmetic

Number of bit operations required to multiply two n-bit integers
x & y

Let n = 2t. Then

x = 2t x1 + x0 & y = 2ty1 + y0

x.y = u2.22t + u1.2t + u0

where u0 = x0.y0, u2 = x1.y1 & u1 = (x0 + x1).(y0 + y1) − u0 − u2.
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Integer Representations and Algorithms

Bit Operation for Modular Exponentiation

Exercise

Compute 337 mod 53

Solution
Binary representation of 37 = 32 + 4 + 1 = 100101

First we repeatedly square 3 mod 53 until we have worked out 32k

for every k s/t 2k ≤ 37.

We get
32 = 9, 34 = 92 = 81 ≡ 28, 38 ≡ 282 = 784 ≡ −11(∵ 15 × 53 = 795),
316 ≡ 121 ≡ 15 , 332 ≡ 225 ≡ 13.

Therefore,
337 ≡ 13 × 28 × 3 = 13 × 84 ≡ 13 × 31 = 403 ≡ 32.
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Integer Representations and Algorithms

Bit Operation for Modular Exponentiation

Find bn mod m efficiently, where b, n, & m are large integers.

We use the binary expansion of n = (ak−1, . . . , a1, a0)2, to compute
bn.

bn = (b)ak−12k−1+···+a12+a0 = (b)ak−1.2k−1
. . . (b)a1.2 . (b)a0

Therefore, to compute bn, we need only compute the values of

b, b2,
(
b2

)2
= b4,

(
b4

)2
= b8, . . . , (b)2k−1

and the multiply the terms b2 j
in this list, where a j = 1.
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Integer Representations and Algorithms

Bit Operation for Modular Exponentiation

procedure modular exponentiation bn mod m;
x := 1;
power := b mod m;
for i := 0 to k − 1 do

if ai = 1 then
x← (x.power) mod m

end
power ← (power.power) mod m

end
return x {x ≡ bn mod m}

Algorithm 2: Modular Exponentiation

Computational Complexity to compute bn mod m = O((log m)2 log n)
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Integer Representations and Algorithms

Bit Operation for Doing Arithmetic

Example
An upper bound for the number of bit operations required to compute
n!.

i. At the ( j − 1)th step ( j = 2, 3, · · · , n − 1), you are multiplying j! by
j + 1.

ii. n − 2 steps requires to compute n!, where each step involves
multiplying a partial product by the next integer.

iii. Product of n k-bit integers will have at most nk bits.

iv. At each step, we require multiplication of an integer with at most k
bits by an integer with at most nk bits.

v. The total number of bit operations is bounded by (n − 2)nk2.

Time(to compute n!) ≤ n2(ln n)2.
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Integer Representations and Algorithms

Big-O

Definition

Let f , g : N→ R, g(x) > 0 ∀ x ≥ a, where a ∈ N. Then f = O(g) means that f (x)
g(x)

is bounded ∀ x ≥ a, i.e., ∃ a constant M > 0 such that

| f (x)| ≤ M.g(x) ∀ x ≥ a.

Example

Let f (n) = 2.n3 + 3.n2 + 4.n + 5 & g(n) = n3.

Then f = O(g), for take a = 5, M = 3.

The notation Big O represents an upper bound of the computational
complexity of an algorithm in the worst-case scenario.
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Integer Representations and Algorithms

Big-O

g is simpler function than f and it does not increase much faster
than f .

Example

1 n2 = O(n3 + n2ln n + 595)

2 n2 = O(en2
)

3 e−n = O(n2)

4 f (n)(= a0 + a1n + . . . + adnd) = O(nd)

5 ln n = O(nδ) f or any δ ∈ R+
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Integer Representations and Algorithms

Small-o

Definition
Let f and g be 2 +ve real valued functions such that

lim
n→∞

f (n)
g(n)

→ 0.

Then we say that f = o(g), ⇒ f (n) � g(n) when n is large.

A function f is negligible if f = o(1/g) for any polynomial g(n) = nc

The notation g = Ω( f ) means exactly the same thing as f = O(g).

If f = O(g) and f = Ω(g) then we use the notation
f = Θ(g) ⇒ C1.g(n) ≤ f (n) ≤ C2.g(n) for n ≥ n0,Ci ∈ R

+.
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Integer Representations and Algorithms

From Polynomial to Exponential Time

Definition
1 Polynomial time algorithm: computational complexity is O(nk), where n

is the size of the input in bits and k ∈ R+.

2 Exponential time algorithm: computational complexity is of the form
O(c f (n)) where c > 1 is a constant and f is a polynomial function on the
size of the input n ∈ N.

3 Subexponential time algorithm: computational complexity for input
q ∈ Na is

Lq(α, c) = O(e(c+o(1))(ln q)α(ln ln q)1−α
),

where α ∈ R, 0 < α < 1 and c is a positive constant.

aNote that q is the input to the algorithm and not the size of the input.
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Primes and Greatest Common Divisors

Primes

Definition
A positive integer p > 1 is called prime if the only positive divisor of p
are 1 and p.

A positive integer n > 1 and is not prime is called composite.

Lemma
Let p be a prime number, and suppose that p | ab. Then either p | a or
p | b (or p divides both a and b).

Theorem
Let p be a prime number, and suppose that p | a1a2 . . . ar . Then p
divides at least one of the factors a1, a2, . . . , ar.
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Primes and Greatest Common Divisors

The Fundamental Theorem of Arithmetic

Theorem (The Fundamental Theorem of Arithmetic)
Every integer can be written as the product of primes (in order of
nondecreasing size) in an essentially unique way.

Every nonzero integer n can be expressed as a product of the form

n = ±pe1
1 pe2

2 . . . pek
k

where the pi’s are k distinct primes and the ei’s are integers with ei > 0.
This representation is unique up to the order in which the factors are
writtena.

aIf we decide that 1 should be considered to be a prime, the uniqueness of this decomposition into primes would
no longer hold!
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Primes and Greatest Common Divisors

The Fundamental Theorem of Arithmetic

Example

100 = 2.2.5.5 = 22.52

641 = 641

999 = 3.3.3.37 = 33.37

1024 = 2.2.2.2.2.2.2.2.2.2 = 210

9105293 = 37 × 43 × 59 × 97

If n is not itself prime, then there must be a prime p ≤
√

n that divides n.
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Primes and Greatest Common Divisors

The Fundamental Theorem of Arithmetic

Problem
1 How can we tell if a given number n is prime or composite?

2 If n is composite, how can we factor it into primes?
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Primes and Greatest Common Divisors

Revisit – Greatest Common Divisor (GCD)

Definition
Given a, b ∈ Z, a & b , 0, the greatest common divisor a & b, denoted
gcd(a, b), is the positive common divisor of a & b, that is divisible by
each of their common divisors. In other words, the largest integer d s/t
d | a & d | b.

Definition
The integers a and b are relatively prime if gcd(a, b) = 1.

Definition
The integers a1, a2, . . . , an are pairwise relatively prime if gcd(ai, a j) = 1
whenever 1 ≤ i < j ≤ n.
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Primes and Greatest Common Divisors

Revisit – GCD

Suppose that the prime factorizations of the positive integers
a & b are

a = pa1
1 pa2

2 . . . pan
n , b = pb1

1 pb2
2 . . . pbn

n ,

where each exponent is a nonnegative integer. Then

gcd(a, b) = pmin(a1,b1)
1 pmin(a2,b2)

2 . . . pmin(an,bn)
n

Finding the gcd of two positive integers using their prime
factorizations is not efficient because there is no efficient
algorithm for finding the prime factorization of a positive integer.
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Primes and Greatest Common Divisors

Finding the Least Common Multiple (LCM)

Definition

The least common multiple of the positive integers a & b is the smallest positive
integer that is divisible by both a & b. It is denoted by lcm(a, b).

Suppose
a = pa1

1 pa2
2 . . . pan

n , b = pb1
1 pb2

2 . . . pbn
n ,

where each exponent is a nonnegative integer. Then

lcm(a, b) = pmax(a1 ,b1)
1 pmax(a2 ,b2)

2 . . . pmax(an ,bn)
n

Theorem

Let a & b be positive integers. Then

ab = gcd(a, b) × lcm(a, b)
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Primes and Greatest Common Divisors

Revisit – GCD

Theorem
(i) gcd(a, b) = gcd(b, a).

(ii) gcd(a, a) = a.

(iii) gcd(a, b) = gcd(a − b, b)

(iv) gcd(0, a) = a.
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Primes and Greatest Common Divisors

Euclidean Algorithm

Euclidean algorithm for computing
the gcd(a, b)

Input: 2 non-negative integers
a & b, with a ≥ b.
Output: gcd(a, b)

1 While (b , 0) do
1.1 Set r ← a mod b,

a← b, b← r.

2 Return(a)

gcd(4864, 3458)

4864 = 1.3458 + 1406
3458 = 2.1406 + 646
1406 = 2.646 + 114

646 = 5.114 + 76
114 = 1.76 + 38
76 = 2.38 + 0.
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Primes and Greatest Common Divisors

Correctness of Euclidean Algorithm

Lemma
Let a = bq + r, where a, b, q, & r ∈ Z and r ≥ 0. Then gcd(a, b) = gcd(b, r).

Proof.
Suppose that d | a and d | b. Then d also divides a − bq = r. Hence,
any common divisor of a & b must also be any common divisor of
b & r.
Suppose that d | b and d | r. Then d | (bq + r) = a. Hence, any
common divisor of a & b must also be a common divisor of b & r.
Therefore, gcd(a, b) = gcd(b, r).

�
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Primes and Greatest Common Divisors

GCDs as Linear Combinations

Bézout’s Lemma
∀ a, b ∈ Z, ∃ s, t ∈ Z s/t gcd(a, b) = s.a + t.b

Definition
If a & b are positive integers, then integers s & t s/t gcd(a, b) = sa + tb
are called Bézout coefficients of a & b. The equation gcd(a, b) = sa + tb
is called Bézout’s identity.

By Bézout’s lemma, the gcd(a, b) can be expressed in the form
sa + tb where s, t ∈ Z. This is a linear combination with integer
coefficients of a & b.
The smallest positive value of sa + tb = gcd(a, b)
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Primes and Greatest Common Divisors

Extended Euclidean Algorithm

Extended Euclidean algorithm

Input: 2 non-negative integers a & b, with a ≥ b.
Output: d = gcd(a, b) & x, y ∈ Z s/t ax + by = d.

1 If b = 0 then set d ← a, x← 1, y← 0, and
return(d, x, y).

2 Set x2 ← 1, x1 ← 0, y2 ← 0, y1 ← 1.
3 While (b > 0) do

3.1 q← ba/bc, r ← a − qb,
x← x2 − qx1, y← y2 − qy1.

3.2 a← b, b← r, x2 ← x1,
x1 ← x, y2 ← y1, and y1 ← y.

4 Set d ← a, x← x2, y← y2, and return(d, x, y).

a = 4864, b = 3458

38 = 32.4864 − 45.3458
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Primes and Greatest Common Divisors

Consequences of Bézout’s Theorem

Lemma
If a, b, c ∈ N s/t gcd(a, b) = 1 and a | bc, then a | c.

Lemma
If p is prime and p | a1a2 . . . an, then p | ai for some i.

Theorem
Let m be a positive integer and let a, b, c ∈ Z. If ac ≡ bc mod m and
gcd(c,m) = 1, then a ≡ b mod m.
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Primes and Greatest Common Divisors

Revisit – Congruences

If ac ≡ bc mod m, it need not be true that a ≡ b mod m.

It is not always possible to divide congruences.

15 × 2 ≡ 20 × 2 mod 10, however, 15 . 20 mod 10.

uv ≡ 0 mod m with u . 0 mod m and v . 0 mod m.

6 × 4 ≡ 0 mod 12, however, 6 . 0 mod 12 and 4 ≡ 0 mod 12.

If gcd(c,m) = 1, then we can cancel c from ac ≡ bc mod m.
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Primes and Greatest Common Divisors

Revisit – Congruences

Solve x2 + 2x − 1 ≡ 0 mod 7

x ≡ 2 mod 7 and x ≡ 3 mod 7 are the two solutions

Solve 6x ≡ 15 mod 514.

The congruence has no solutions.

Theorem
Let a, c, and m be integers with m ≥ 1, and let g = gcd(a,m).

(i) If g - c, then the congruence ax ≡ c mod m has no solutions.

(ii) If g | c, then the congruence ax ≡ c mod m has exactly g
incongruent solutions.
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Primes and Greatest Common Divisors

Revisit – Linear Congruences

Definition
A congruence of the form

ax ≡ b mod m,

where m ∈ N, a & b ∈ Z, and x is a variable, is called a linear
congruence.
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Revisit – Linear Congruences

One method of solving linear congruences is by finding the
inverse ā mod m, if it exists.
Although we can not divide both sides of the congruence by a, we
can multiply by ā to solve for x.

Theorem
If a & m are relatively prime integers and m > 1, then an inverse of a
modulo m exists. Furthermore, this inverse is unique modulo m.
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Revisit – Linear Congruences

Theorem
Let a,m ∈ Z with m > 0, and let d := gcd(a,m).

1 For every b ∈ Z, the congruence ax ≡ b mod m has a solution iff
d | b.

2 For every x ∈ Z, we have ax ≡ 0 mod m iff x ≡ 0 mod m
d .

3 For all x, x′ ∈ Z, we have ax ≡ ax′ mod m iff x ≡ x′ mod m
d
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Revisit – Linear Congruences

Example
In the following table is an illustration for m = 15 and a = 1, 2, 3, 4, 5.

1.x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.x 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13

3.x 0 3 6 9 12 0 3 6 9 12 0 3 6 9 12

4.x 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11

5.x 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
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Revisit – Congruences

Theorem
Let p be a prime number and let

f (x) = a0xd + a1xd−1 + · · · + ad

be a polynomial of degree d ≥ 1 with integer coefficients and with
p - a0.
Then the congruence

f (x) ≡ 0 mod p

has at most d incongruent solutions.
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Primes and Greatest Common Divisors

Fermat’s Little Theorem

Take a non-zero number a ∈ Zm and compute its powers
a, a2, a3, . . . am mod m.

a a2 a3 a4 a5 a6

1 1 1 1 1 1
2 4 2 4 2 4
3 3 3 3 3 3
4 4 4 4 4 4
5 1 5 1 5 1

Use Fermat’s Little Theorem to simplify computations

622 − 1 = 23 × 5722682775750745.

235 mod 7 ≡ 32 ≡ 4 mod 7.
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Fermat’s Little Theorem

Lemma
Let p be a prime number and let a be a number s/t a . 0 mod p. Then
the numbers

a, 2a, 3a, . . . , (p − 1)a mod p

are the same as the numbers

1, 2, 3, . . . , (p − 1) mod p,

although they may be in a different order.
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Fermat’s Little Theorem

Theorem
Let p be a prime number, and let a be any number s/t a . 0 mod p.
Then

ap−1 ≡ 1 mod p.

Fermat’s Little Theorem can be used to show that a number is not
a prime without actually factoring it.
E.g.,

21234566 ≡ 899557 mod 1234567.

This means that 1234567(= 127 × 9721) cannot be a prime.
Consider the number m = 10100 + 37. Verify 2m−1 . 1 mod m.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 71 / 138



Primes and Greatest Common Divisors

Fermat’s Little Theorem

Theorem
Let p be a prime number, and let a be any number s/t a . 0 mod p.
Then

ap−1 ≡ 1 mod p.

Fermat’s Little Theorem can be used to show that a number is not
a prime without actually factoring it.

E.g.,

21234566 ≡ 899557 mod 1234567.

This means that 1234567(= 127 × 9721) cannot be a prime.
Consider the number m = 10100 + 37. Verify 2m−1 . 1 mod m.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 71 / 138



Primes and Greatest Common Divisors

Fermat’s Little Theorem

Theorem
Let p be a prime number, and let a be any number s/t a . 0 mod p.
Then

ap−1 ≡ 1 mod p.

Fermat’s Little Theorem can be used to show that a number is not
a prime without actually factoring it.
E.g.,

21234566 ≡ 899557 mod 1234567.

This means that 1234567(= 127 × 9721) cannot be a prime.
Consider the number m = 10100 + 37. Verify 2m−1 . 1 mod m.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 71 / 138



Primes and Greatest Common Divisors

Fermat’s Little Theorem

Theorem
Let p be a prime number, and let a be any number s/t a . 0 mod p.
Then

ap−1 ≡ 1 mod p.

Fermat’s Little Theorem can be used to show that a number is not
a prime without actually factoring it.
E.g.,

21234566 ≡ 899557 mod 1234567.

This means that 1234567(= 127 × 9721) cannot be a prime.

Consider the number m = 10100 + 37. Verify 2m−1 . 1 mod m.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 71 / 138



Primes and Greatest Common Divisors

Fermat’s Little Theorem

Theorem
Let p be a prime number, and let a be any number s/t a . 0 mod p.
Then

ap−1 ≡ 1 mod p.

Fermat’s Little Theorem can be used to show that a number is not
a prime without actually factoring it.
E.g.,

21234566 ≡ 899557 mod 1234567.

This means that 1234567(= 127 × 9721) cannot be a prime.
Consider the number m = 10100 + 37.

Verify 2m−1 . 1 mod m.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 71 / 138



Primes and Greatest Common Divisors

Fermat’s Little Theorem

Theorem
Let p be a prime number, and let a be any number s/t a . 0 mod p.
Then

ap−1 ≡ 1 mod p.

Fermat’s Little Theorem can be used to show that a number is not
a prime without actually factoring it.
E.g.,

21234566 ≡ 899557 mod 1234567.

This means that 1234567(= 127 × 9721) cannot be a prime.
Consider the number m = 10100 + 37. Verify 2m−1 . 1 mod m.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 71 / 138
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Euler’s Generalization

Fermat’s Little Theorem is certainly not true if we replace p by a
composite number.

55 mod 6 ≡ 5 mod 6, 28 mod 9 ≡ 4 mod 9.

Can we find x s/t

ax ≡ 1 mod m.

Claim: @x if gcd(a,m) > 1.
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Euler’s Generalization

The number of integers between 1 and m that are relatively prime
to m is denoted by φ(m) and is defined by

φ(m) = #{a : 1 ≤ a ≤ m and gcd(a,m) = 1}.

φ(m) =
∑m

k=1
gcd(k,m)=1

1

The function φ(·) is called Euler’s phi function.
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Euler’s Generalization

Lemma
Let

1 ≤ b1 < b2 < · · · < bφ(m) < m.

be the φ(m) numbers between 0 and m that are relatively prime to m. If
gcd(a,m) = 1, then the numbers

b1a, b2a, b3a, . . . , bφ(m)a mod m

are the same as the numbers

b1, b2, b3, . . . , bφ(m) mod m,

although they may be in a different order.
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Euler’s Theorem

Theorem
If gcd(a,m) = 1, then

aφ(m) ≡ 1 mod m.

It is a beautiful and powerful result, however, it will not be of much
use if computing φ(m) is hard.

Compute φ(1000) = 400

Compute φ(10100) = 4 × 1099

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 75 / 138



Primes and Greatest Common Divisors

Euler’s Theorem

Theorem
If gcd(a,m) = 1, then

aφ(m) ≡ 1 mod m.

It is a beautiful and powerful result,

however, it will not be of much
use if computing φ(m) is hard.

Compute φ(1000) = 400

Compute φ(10100) = 4 × 1099

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 75 / 138



Primes and Greatest Common Divisors

Euler’s Theorem

Theorem
If gcd(a,m) = 1, then

aφ(m) ≡ 1 mod m.

It is a beautiful and powerful result, however, it will not be of much
use if computing φ(m) is hard.

Compute φ(1000) =

400

Compute φ(10100) = 4 × 1099

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 75 / 138



Primes and Greatest Common Divisors

Euler’s Theorem

Theorem
If gcd(a,m) = 1, then

aφ(m) ≡ 1 mod m.

It is a beautiful and powerful result, however, it will not be of much
use if computing φ(m) is hard.

Compute φ(1000) = 400

Compute φ(10100) =

4 × 1099

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 75 / 138



Primes and Greatest Common Divisors

Euler’s Theorem

Theorem
If gcd(a,m) = 1, then

aφ(m) ≡ 1 mod m.

It is a beautiful and powerful result, however, it will not be of much
use if computing φ(m) is hard.

Compute φ(1000) = 400

Compute φ(10100) = 4 × 1099

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 75 / 138



Primes and Greatest Common Divisors

Euler’s phi Function

Properties of Euler’s phi function
i. If p is a prime, then φ(p) =

p − 1.

ii. If p is a prime, then φ(pm) = (pm − pm−1).

Example
Compute

(i) φ(2401) = φ(74) = (74 − 73) = 2058

(ii) φ(14) = 6

(iii) φ(15) = 8

(iv) φ(210) = φ(14 × 15) = 48
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Primes and Greatest Common Divisors

Euler’s phi Function

Properties of Euler’s phi function
iii. The Euler phi function is multiplicative. That is, if gcd(m, n) = 1,

then φ(mn) = φ(m)φ(n).

Let S = {a : 1 ≤ a ≤ mn and gcd(a,mn) = 1}.

Let

T =


1 ≤ b ≤ m and gcd(b,m) = 1

(b, c) :
1 ≤ c ≤ n and gcd(c, n) = 1


a mod mn 7→ (a mod m, a mod n)
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Primes and Greatest Common Divisors

Euler’s phi Function

1 To prove different numbers in S map to to different pairs in T .

2 Every pair in T maps to some number in S .

Theorem (Chinese Remainder Theorem (CRT))
Let m and n be integers satisfying gcd(m, n) = 1, and let b and c be any
integers. Then the simultaneous congruences

x ≡ b mod m and x ≡ c mod n

have ! solution in 0 ≤ x < mn.
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Let m and n be integers satisfying gcd(m, n) = 1, and let b and c be any
integers. Then the simultaneous congruences

x ≡ b mod m and x ≡ c mod n

have ! solution in 0 ≤ x < mn.
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Primes and Greatest Common Divisors

Chinese Remainder Theorem

Example
Solve

x ≡ 8 mod 11 and x ≡ 3 mod 19.
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Primes and Greatest Common Divisors

Chinese Remainder Theorem

In the first century, the Chinese mathematician Sun-Tzu asked:
There are certain things whose number is unknown. When
divided by 3, the remainder is 2; when divided by 5, the remainder
is 3; when divided by 7, the remainder is 2. What will be the
number of things?

This puzzle can be translated into the solution of the system of
congruences:

x ≡ 2 mod 3,
x ≡ 3 mod 5,
x ≡ 2 mod 7?

Now, we’ll see how the Chinese Remainder Theorem can be used
to solve Sun-Tzu’s problem.
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Primes and Greatest Common Divisors

Chinese Remainder Theorem

Theorem (CRT)
If the integers n1, n2, · · · , nk are pairwise relatively prime, then the
system of simultaneous congruences

x ≡ ai mod ni,

for 1 ≤ i ≤ k has a ! solution modulo n = n1n2 · · · nk which is given by

x =

k∑
i=1

aiNiMi mod n,

where Ni = n/ni & Mi = N−1
i mod ni.
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Primes and Greatest Common Divisors

Chinese Remainder Theorem

Example
Consider the 3 congruences from Sun-Tzu’s problem:
x ≡ 2 mod 3, x ≡ 3 mod 5, x ≡ 2 mod 7.

n = 3.5.7 = 105, N1 = n/3 = 35, N2 = 21, & N3 = 15
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Primes and Greatest Common Divisors

Euler’s phi Function

Properties of Euler’s phi function
iv. If n = pe1

1 pe2
2 · · · p

ek
k , is the prime factorization of n, then

φ(n) =

(
pe1

1 − pe1−1
1

) (
pe2

2 − pe2−1
2

)
. . .

(
pek

k − pek−1
k

)
= n

(
1 − 1

p1

) (
1 − 1

p2

)
. . .

(
1 − 1

pk

)
.
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Prime Numbers

Outline

1 Divisibility and Modular Arithmetic

2 Integer Representations and Algorithms

3 Primes and Greatest Common Divisors

4 Prime Numbers

5 Primes Generation
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Prime Numbers

Infinitude of Primes

Theorem (Euclid)
There are infinitely many primes.

Proof.
Assume there are finitely many primes: p1, p2, . . . , pn

Let q = p1 p2 . . . pn + 1

Either q is prime or by the fundamental theorem of arithmetic it is a
product of primes.
However p j - q for 1 ≤ j ≤ n; since if p j | q, then
p j | (q − p1 p2 . . . pn) ⇒ p j | 1

Hence, there is a prime q not on the list p1, p2, . . . , pn.

�

Note: This proof was given by Euclid in The Elements more than 2000 years ago. The proof is considered to be one of the
most beautiful in all mathematics. It is the first proof in The Book, inspired by the famous mathematician Paul Erdös imagined
collection of perfect proofs maintained by God.
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Prime Numbers

Infinitude of Primes

Example

We start with a list consisting of the single prime {2}a. Then we
compute

n = 2 + 1 = 3 → prime

n = 2.3 + 1 = 7 → prime

n = 2.3.7 + 1 = 43 → prime

n = 2.3.7.43 + 1 = 1807

= 13 × 139 → not prime

a2 is the oddest prime!
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Prime Numbers

Infinitude of Primes

Every odd number is congruent to either 1 or 3 mod 4

Odd Primes

1 mod 4 3 mod 4
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Prime Numbers

Infinitude of Primes

Theorem
There are infinitely many primes of the form 3 mod 4.
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Prime Numbers

Infinitude of Primes

Theorem
There are infinitely many primes of the form 3 mod 4.
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Prime Numbers

Infinitude of Primes

Theorem
There are infinitely many primes of the form 1 mod 4.
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Prime Numbers

Infinitude of Primes
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Prime Numbers

Infinitude of Primes

Theorem (Dirichlet’s Theorem on Primes in Arithmetic Progressions)

Let a and m be integers with gcd(a,m) = 1. Then there are infinitely
many primes of the form

p ≡ a mod m.
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Prime Numbers

The Prime Number Theorem

Theorem
When x is large, the number of primes less than x ≈ x

ln(x) . In other
words,

lim
x→∞

π(x)
x/ln(x)

= 1,

where
π(x) = # {primes p with p ≤ x}
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Prime Numbers

Conjectures

Conjecture (Goldbach’s Conjecture)
Every even number n ≥ 4 is a sum of two primes.

Conjecture (The Twin Primes Conjecture)
There are infinitely many prime numbers p s/t p + 2 is also prime.

Conjecture (The n2 + 1 Conjecture)

There are infinitely many primes of the form n2 + 1
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Prime Numbers

Mersenne Primes

Let m = an − 1, for n ≥ 2. m ∈ {prime, composite}.

xn − 1 = (x − 1)(xn−1 + xn−2 + · · · + x2 + x + 1).

(a − 1) | (an − 1). So an − 1 will be composite unless
a − 1 = 1⇒ a = 2.
Observation:

(i) 2n − 1 is divisible by 3, when n is even.

(ii) 2n − 1 is divisible by 7, when n is divisible by 3

(iii) 2n − 1 is divisible by 31, when n is divisible by 5
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Prime Numbers

Mersenne Primes

Proposition
If an − 1 is prime for some numbers a ≥ 2 and n ≥ 2, then a must equal
2 and n must be a prime.

If we are interested in primes of the form an − 1 we only need to a
number of the form

2p − 1, where p is prime.

Definition (Mersenne Primes)
Primes of the form 2p − 1 are called Mersenne primes.

The most recent Mersenne primes found in Dec 2018
M51 = 282589933 − 1→ 24862048-digit
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Prime Numbers

Mersenne Primes

Open Problem
Are there infinitely many Mersenne primes, or does the list of
Mersenne primes eventually stop?

Theorem (Euclid’s Perfect Number Formula)

If 2p − 1 is a prime number, then 2p−1(2p − 1) is a perfect number.

Example

p 2 3 5 7 13
2p−1(2p − 1) 6 28 496 8128 33550336
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Prime Numbers

σ Function

Definition
This function σ(n) is defined as

σ(n) = sum of all divisors of n (including 1 and n).

Example

σ(6) = 1 + 2 + 3 + 6 = 12

σ(8) = 1 + 2 + 4 + 8 = 15

σ(18) = 1 + 2 + 3 + 6 + 9 + 18 = 39
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Prime Numbers

Properties of σ Function

(i) σ(p) =

p + 1

(ii)

σ(pk) = 1 + p + p2 + · · · + pk =
pk+1 − 1

p − 1
.

(iii) If gcd(m, n) = 1, then σ(mn) = σ(m)σ(n).

Example
σ(21) = 1 + 3 + 7 + 21 = (1 + 3) + 7(1 + 3) = (1 + 3)(1 + 7) = σ(3)σ(7)

σ(30) = 1 + 2 + 3 + 5 + 6 + 10 + 15 + 30 = 72

σ(5) = (5 + 1) = 6, σ(6) = 12
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(iii) If gcd(m, n) = 1, then σ(mn) = σ(m)σ(n).
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Prime Numbers

Perfect Number

How is the σ function related to perfect numbers?

σ(n) = 2n, when n is perfect

Theorem (Euler’s Perfect Number Theorem)
If n is an even perfect number, then n looks like

2p−1(2p − 1),

where 2p − 1 is a Mersenne prime.
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Prime Numbers

Perfect Number
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Prime Numbers

Perfect Number

Are there any odd perfect numbers?

There are no odd perfect numbers < 10300. (till date)

σ(15) = σ(3) × σ(5) = 24 < 2 × 15

σ(n) < 2n for odd n.

n = 945 = 33 × 5 × 7⇒ σ(n) = 1920 > 2n
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Prime Numbers

Powers mod m

We know how to compute

ak mod m,

efficiently.

Compute 5100000000000000 mod 12830603

12830603 = 3571 × 3593⇒ φ(12830603) = 12823440.

100000000000000 = 7798219 × 12823440 + 6546640
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Prime Numbers

kth Roots mod m

Now, how to find x efficiently when

xk ≡ b mod m

⇒ x ≡
k√
b mod m

Compute
4√
7 mod 15

Compute
7√
22 mod 33
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Prime Numbers

kth Roots mod m

kth roots mod m
Let b, k, and m be given integers s/t gcd(b,m) = 1 and gcd(k, φ(m)) = 1
We can find a solution to the congruence

xk ≡ b mod m.

(i) Compute φ(m).

(ii) Find positive integers u and v that satisfy ku − φ(m)v = 1.

(iii) Compute bu mod m. The value obtained gives the solution x.
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Prime Numbers

kth Roots mod m

Exercise
1 Compute

7√
2 mod 33

⇒ 8 ≡
7√
2 mod 33

2 Compute
11√

7 mod 40⇒ 23 ≡
11√

7 mod 40
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Primes Generation

Outline

1 Divisibility and Modular Arithmetic

2 Integer Representations and Algorithms

3 Primes and Greatest Common Divisors

4 Prime Numbers

5 Primes Generation
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Primes Generation

The Sieve of Erastosthenes

The Sieve of Erastosthenes can be used to find all primes not
exceeding a specified positive integer n.

For example, begin with the list of integers between 1 and 100.

(i) Delete all the integers, other than 2, divisible by 2.
(ii) Delete all the integers, other than 3, divisible by 3.
(iii) Next, delete all the integers, other than 5, divisible by 5.
(iv) Next, delete all the integers, other than 7, divisible by 7.
(v) Since all the remaining integers are not divisible by any of the

previous integers, other than 1, the primes are:

{2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,

71, 73, 79, 83, 89, 97}

Computational complexity of this algo = O(n log log n)
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Primes Generation

The Sieve of Erastosthenes

All prime numbers in the range [1 : 16]
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Primes Generation

Primes and Arithmetic Progressions

Euclid proved that there are infinitely many primes.
G. Lejuenne Dirchlet also showed that every arithmetic
progression ka + b, k = 1, 2, . . . , where a & b have no common
factor greater than 1 contains infinitely many primes in the 19th
century
Are there long arithmetic progressions made up entirely of
primes?

5,11, 17, 23, 29 is an arithmetic progression of 5 primes.
199, 409, 619, 829, 1039,1249, 1459, 1669, 1879, 2089 is an
arithmetic progression of 10 primes.

In the 1930s, Paul Erdös conjectured that for every positive integer
n > 1, there is an arithmetic progression of length n made up
entirely of primes. This was proven in 2006, by Ben Green and
Terence Tao.
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Primes Generation

Generating Primes

Number theory is noted as a subject for which it is easy to
formulate conjectures, some of which are difficult to prove and
others that remained open problems for many years.

It would be useful to have a function f (n) s/t f (n) is prime ∀n ∈ N.

If we had such a function, we could generate large primes for use
in cryptography and other applications.

Consider the polynomial f (n) = n2 − n + 41. This polynomial has
the interesting property that f (n) is prime for all positive integers
n ≤ 40.
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Primes Generation

Generating Primes

The problem of generating large primes is of both theoretical and
practical interest.

Finding large primes, say with 600 hundred of digits, is important
in cryptography.

So far, no useful closed formula that always produces primes has
been found.

Fortunately, we can generate large integers which are almost
certainly primes.

In 2002, AKS gave algorithm PRIMES is in P

Miller-Rabin primality test proposed in 1980. It’s a probabilistic
algorithm. It is normally used to check primality of large number.
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Primes Generation

Carmichael Numbers

Definition

A composite integer n that satisfies the congruence
bn−1 ≡ 1 mod n ∀ b, b ∈ N with gcd(b, n) = 1 is called a Carmichael number.

Example

The integer 561 is a Carmichael number. To see this:

561 = 3 × 11 × 17.

If gcd(b, 561) = 1, then gcd(b, 3) = 1, gcd(b, 11) = 1 and gcd(b, 17) = 1.

If gcd(b, 561) = 1, we have

b560 =
(
b2

)280
≡ 1 mod 3,

b560 =
(
b10

)56
≡ 1 mod 11,

b560 =
(
b16

)35
≡ 1 mod 17.

⇒ b560 ≡ 1 mod 561
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Primes Generation

Carmichael Numbers

Example
All Carmichael numbers < 10000:

(i) 561 = 3 × 11 × 17
(ii) 1105 = 5 × 13 × 17
(iii) 1729 = 7 × 13 × 19
(iv) 2465 = 5 × 17 × 29
(v) 2821 = 7 × 13 × 31
(vi) 6601 = 7 × 23 × 41
(vii) 8911 = 7 × 19 × 67

Carmichael number with 4 prime factors 62745 = 3 × 5 × 47 × 89

There are infinitely many Carmichael numbers
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Primes Generation

Carmichael Numbers

Theorem
Korselt’s Criterion for Carmichael Numbers Let n be a composite
number. Then n is a Carmichael number iff it is odd and every prime p
dividing n satisfies the following two conditions:

(i) p2 - n

(ii) (p − 1) | (n − 1)
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Primes Generation

Quadratic Residue

Example

b 1 2 3 4 5 6 7 8 9 10 11 12
b2 1 4 9 3 12 10 10 12 3 9 4 1

mod 13

Is 3 congruent to the square of some number modulo 13?

Does the congruence x2 ≡ −1 mod 13 have a solution?

Definition

A nonzero number that is congruent to a square modulo p is called a quadratic
residue mod p. A number that is not congruent to a square modulo p is called a
quadratic nonresidue mod p.
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Primes Generation

Quadratic Residue

Definition

Let a ∈ Z∗n; a is said to be a quadratic residue modulo n, if
∃ x ∈ Z∗n 3 x2 ≡ a mod n.

If no such x exists, then a is called a quadratic non-residue modulo n.

The set of all quadratic residues modulo n is denoted by Qn and the set of all quadratic
non-residues is denoted by Qn.

Let p be an odd prime and let α be a generator of Z∗p. Then a ∈ Z∗p is a quadratic
residue modulo p⇔ a ≡ αi mod p, where i is an even integer.

It follows that #Qp =
p−1

2 and #Qp =
p−1

2 .

Theorem

Let p be an odd prime. Then there are exactly p−1
2 quadratic residues and exactly p−1

2
quadratic nonresidues mod p.
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Primes Generation

Quadratic Residue

Example
α = 6 is a generator of Z∗13. The powers of α are

i 0 1 2 3 4 5 6 7 8 9 10 11
αi mod 13 1 6 10 8 9 2 12 7 3 5 4 11

Hence Q13 = {1, 3, 4, 9, 10, 12} and Q13 = {2, 5, 6, 7, 8, 11}.

Let n = p.q be a product of two distinct odd primes. Then a ∈ Z∗n is
a quadratic residue modulo n⇔ a ∈ Qp & a ∈ Qq.

It follows that #Qn =
(p−1)(q−1)

4 and #Qn =
3(p−1)(q−1)

4 .

Let n = 21.
Then Q21 = {1, 4, 16} and Q21 = {2, 5, 8, 10, 11, 13, 17, 19, 20}.
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Primes Generation

The Legendre and Jacobi Symbols

Let p be an odd prime and a an integer. The Legendre symbol(
a
p

)
is defined to be

(
a
p

)
=


0, if p | a,
1, if a ∈ Qp,

−1, if a ∈ Qp.

Let n ≥ 3 be odd with prime factorization n = pe1
1 pe2

2 · · · p
ek
k . Then

the Jacobi symbol
(

a
n

)
is defined to be(a

n

)
=

(
a
p1

)e1
(

a
p2

)e2

· · ·

(
a
pk

)ek
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Primes Generation

Properties of Legendre Symbol

(i)
(

a
p

)
= a(p−1)/2 mod p. In particular,

(
1
p

)
= 1 and

(
−1
p

)
= (−1)(p−1)/2.

Hence, −1 ∈ Qp if p ≡ 1 mod 4, and −1 ∈ Qp if p ≡ 3 mod 4.

(ii)
(

ab
p

)
=

(
a
p

) (
b
p

)
. Hence if a ∈ Z∗p, then

(
a2

p

)
= 1.

(iii) If a ≡ b mod p, then
(

a
p

)
=

(
b
p

)
.

(iv) Law of quadratic reciprocity: If q is an odd prime distinct from p,
then (

p
q

)
=

(
q
p

)
(−1)(p−1)(q−1)/4.
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Primes Generation

Properties of Legendre Symbol

Theorem (Law of Quadratic Reciprocity)
Let p and q be distinct odd primes.(

−1
p

)
=

{
1, if p ≡ 1 mod 4,
−1, if p ≡ 3 mod 4,

(
2
p

)
=

{
1, if p ≡ 1 or 7 mod 8,
−1, if p ≡ 3 or 5 mod 8,

(
q
p

)
=


(

p
q

)
, if p ≡ 1 mod 4 or q ≡ 1 mod 4,

−
(

p
q

)
, if p ≡ q ≡ 3 mod 4

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 119 / 138



Primes Generation

Properties of Legendre Symbol

Theorem (Law of Quadratic Reciprocity)
Let p and q be distinct odd primes.(

−1
p

)
=

{
1, if p ≡ 1 mod 4,
−1, if p ≡ 3 mod 4,

(
2
p

)
=

{
1, if p ≡ 1 or 7 mod 8,
−1, if p ≡ 3 or 5 mod 8,

(
q
p

)
=


(

p
q

)
, if p ≡ 1 mod 4 or q ≡ 1 mod 4,

−
(

p
q

)
, if p ≡ q ≡ 3 mod 4

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Number Theory July 20, 2023 119 / 138
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Primes Generation

Examples

Example

(
14
137

)
=

(
2

137

) (
7

137

)
Quadratic Residue Multiplication Rule

=
(

7
137

)
Quadratic Reciprocity says

(
2

137

)
= 1, ∵ 137 ≡ 1 mod 8

=
(

137
7

)
Quadratic Reciprocity and 137 ≡ 1 mod 4

=
(

4
7

)
reducing 137 mod 7

= 1 ∵ 4 = 22 is certainly a square

Exercise
Compute (

55
179

)
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Primes Generation

Generalized Law of Quadratic Reciprocity

Theorem (Generalized Law of Quadratic Reciprocity)
Let a and b be odd positive integers.(

−1
b

)
=

{
1, if b ≡ 1 mod 4,
−1, if b ≡ 3 mod 4,

(
2
b

)
=

{
1, if b ≡ 1 or 7 mod 8,
−1, if b ≡ 3 or 5 mod 8,

(a
b

)
=


(

b
a

)
, if a ≡ 1 mod 4 or b ≡ 1 mod 4,

−
(

b
a

)
, if a ≡ b ≡ 3 mod 4
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−
(

b
a

)
, if a ≡ b ≡ 3 mod 4
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Solovay-Strassen Theorem

Definition
If n > 1 is an odd integer then an integer a ∈ {1, . . . , n − 1} s/t either

(i) gcd(a, n) > 1, or
(ii) gcd(a, n) = 1 and a(n−1)/2 .

(
a
n

)
mod n

is called an Euler witness for n.

Theorem
Let n be an odd composite positive integer. There is an integer
a ∈ {1, . . . , n − 1} s/t

gcd(a, n) = 1 and a(n−1)/2 .
(a
n

)
mod n.
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Property of Prime Numbers

Theorem
Let p be an odd prime and write

p − 1 = 2kq with q odd.

Let a be any number not divisible by p. Then one of the following two
conditions is true:

(i) aq ≡ 1 mod p

(ii) One of the numbers aq, a2q, a4q, . . . , a2k−1q is congruent to
−1 mod p.
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Miller-Rabin Test for Composite Numbers

Theorem

Let n be an odd integer and write n − 1 = 2kq with q odd. If both of the
following conditions are true for some a not divisible by n, then n is a
composite number

(i)

aq . 1 mod n

(ii)

a2iq . −1 mod n, 0 ≤ i ≤ k − 1
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Miller-Rabin Test for Composite Numbers

Let n be an odd integer and write n − 1 = 2kq with q odd.

If n is prime and 1 ≤ a ≤ n − 1 then an−1 − 1 ≡ 0 mod n

a2kq − 1 =
(
a2k−1q

)2
− 1

=
(
a2k−1q − 1

) (
a2k−1q + 1

)
=

(
a2k−2q − 1

) (
a2k−2q + 1

) (
a2k−1q + 1

)
...

...
...

= (aq − 1)(aq + 1)
(
a2q + 1

) (
a4q + 1

)
. . .

(
a2k−1q + 1

)
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Miller-Rabin Test for Composite Numbers

Example
We will apply the Miller-Rabin test for n = 561 with a = 2

We have n − 1 = 560 = 24 × 35

235 ≡ 263 mod 561,

22.35 ≡ 2632 ≡ 166 mod 561,

24.35 ≡ 1662 ≡ 67 mod 561,

28.35 ≡ 672 ≡ 1 mod 561.

Thus, 2 is a Miller-Rabin witness to the fact that 561 is a
composite number.
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Miller-Rabin Test for Composite Numbers

Exercise
Apply Miller-Rabin test for

1 n = 13

2 n = 41

3 n = 30121
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Fermat Test for Primality – Probabilistic Algorithm

Fermat Test for Primality

Input: n
Output: YES if n is composite, NO otherwise.
Choose a random b, 0 < b < n
if gcd(b, n) > 1 then

return YES
end
else ;
if bn−1 . 1 mod n then

return YES
end
else ;
return NO
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Primes Generation

The Euler Test – Probabilistic Algorithm

If n is an odd prime, we know that an integer can have at most two
square roots, mod n. In particular, the only square roots of
1 mod n are ±1.

If a . 0 mod n, a(n−1)/2 is a square root of an−1 ≡ 1 mod n, so
a(n−1)/2 ≡ ±1 mod n.

If a(n−1)/2 . ±1 mod n for some a with a . 0 mod n, then n is
composite.
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Primes Generation

The Euler Test – Probabilistic Algorithm

For a randomly chosen a with a . 0 mod n, compute
a(n−1)/2 mod n.

(i) If a(n−1)/2 ≡ ±1 mod n, declare n a probable prime, and optionally
repeat the test a few more times.

If n is large and chosen at random, the probability that n is prime is
very close to 1.

(ii) If a(n−1)/2 . ±1 mod n, declare n composite.

This is always correct.

The Euler test is more powerful than the Fermat test.
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The Euler Test – Probabilistic Algorithm

The Euler test is more powerful than the Fermat test.

If the Fermat test finds that n is composite, so does the Euler test.

If n is an odd composite integer (other than a prime power), 1 has
at least 4 square roots mod n.

So we can have a(n−1)/2 ≡ β mod n, where β , ±1 is a square root
of 1.

Then an−1 ≡ 1 mod n. In this situation, the Fermat Test
(incorrectly) declares n a probable prime, but the Euler test
(correctly) declares n composite.
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Miller-Rabin Test – Probabilistic Algorithm

The Euler test improves upon the Fermat test by taking advantage
of the fact, if 1 has a square root other than ±1 mod n, then n
must be composite.

If a(n−1)/2 . ±1 mod n, where gcd(a, n) = 1, then n must be
composite for one of two reasons:

(i) If an−1 . 1 mod n, then n must be composite by Fermat’s Little
Theorem

(ii) If an−1 ≡ 1 mod n, then n must be composite because a(n−1)/2 is a
square root of 1 mod n different from ±1.

The limitation of the Euler test is that is does not go to any special
effort to find square roots of 1, different from ±1. The Miller-Rabin
test does this.
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Miller-Rabin Test – Probabilistic Algorithm

Miller-Rabin Test

Input: an odd integer n ≥ 3 and security parameter t ≥ 1.
Output: an answer “prime" or “composite" to the question: “Is n prime?"
Write n − 1 = 2s.r s/t r is odd.
for i = 1 to t do

Choose a random integer a s/t 2 ≤ a ≤ n − 2.
Compute y ≡ ar mod n
if y , 1 & y , n − 1 then

j← 1.
while j ≤ s − 1 & y , n − 1 do

Compute y← y2 mod n.
If y = 1 then return(“composite").
j← j + 1.

end
If y , n − 1 then return (“composite").

end

end
Return(“prime").
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Miller-Rabin Test

The Miller-Rabin test is very fast and easy to implement on a
computer, since, after computing ar mod n, we simply compute a
few squares mod n.

If n is an odd composite number, then at least 75% of the numbers
a between 1 and n − 1 act as Miller-Rabin witnesses for n.

If we randomly choose 100 different values for a, and if none of
them are Miller-Rabin witnesses for n, then the probability of n
being composite < 2−200 ≈ 6 × 10−61.
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Deterministic Polynomial Time Algorithm

Idea of The AKS Algorithm

Let a ∈ Z, n ∈ N, n ≥ 2, and gcd(a, n) = 1. Then n is prime iff

(X + a)n ≡

Xn + a mod n.

Test the following equation:

(X + a)n ≡ Xn + a
(
mod(Xr − 1), n

)
,

for an appropriately chosen small r.
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Deterministic Polynomial Time Algorithm

The AKS Algorithm
Input: a positive integer n > 1
Output: n is Prime or Composite in deterministic polynomial-time

If n = ab with a ∈ N & b > 1, then output COMPOSITE.
Find the smallest r such that ordr(n) > 4(log n)2.
If 1 < gcd(a, n) < n for some a ≤ r, then output COMPOSITE.
If n ≤ r, then output PRIME.
for a = 1 to b2

√
φ(r) log nc do

if (x − a)n . (xn − a) mod (xr − 1, n),
then output COMPOSITE.

end
Return(“PRIME").

Time Complexity = O(log6 n)
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The End

Thanks a lot for your attention!
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