Introduction to Abstract Algebra

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

July 20, 2023

Disclaimers

All the pictures used in this presentation are taken from freely available websites.

2

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

Outline

(1) Group Theory

- Subgroups
- Cyclic Groups
- Normal Subgroups
- Homomorphism
(2) Rings and Fields
- Ideals and Quotient Rings
- Euclidean Rings
- Polynomial Rings
(3) Vector Spaces

4 Extension Fields

- Finite Fields

Outline

(1) Group Theory

- Subgroups
- Cyclic Groups
- Normal Subgroups
- Homomorphism
(2) Rings and Fields
- Ideals and Quotient Rings
- Euclidean Rings
- Polynomial Rings
(3) Vector Spaces
(4) Extension Fields
- Finite Fields

Group

Exercise

Solve the following equations:

(1) $a+x=b \& y+a=b$

Group

Exercise

Solve the following equations:

(1) $a+x=b \& y+a=b$
(2) $a \cdot x=b$ \& $y \cdot a=b$

Group

Exercise

Solve the following equations:
(1) $a+x=b \& y+a=b$
(2) $a \cdot x=b$ \& $y \cdot a=b$

Solution

First, we try to solve $a+x=b$

$$
\begin{aligned}
a+x & =b \\
(-a)+(a+x) & =(-a)+b
\end{aligned}
$$

Group

Exercise

Solve the following equations:
(1) $a+x=b \& y+a=b$
(2) $a \cdot x=b$ \& $y \cdot a=b$

Solution

First, we try to solve $a+x=b$

$$
\begin{aligned}
a+x & =b \\
(-a)+(a+x) & =(-a)+b \\
(-a+a)+x & =-a+b
\end{aligned}
$$

Group

Exercise

Solve the following equations:
(1) $a+x=b \& y+a=b$
(2) $a \cdot x=b$ \& $y \cdot a=b$

Solution

First, we try to solve $a+x=b$

$$
\begin{aligned}
a+x & =b \\
(-a)+(a+x) & =(-a)+b \\
(-a+a)+x & =-a+b \\
0+x & =-a+b \\
x & =-a+b
\end{aligned}
$$

Binary Operation

Definition

Let X be a non-void set. Then a binary operation in X is a function

$$
f: S(\subset X \times X) \rightarrow X
$$

Binary Operation

Definition

Let X be a non-void set. Then a binary operation in X is a function

$$
f: S(\subset X \times X) \rightarrow X
$$

- Usually, the binary operation f is denoted by 'o' or '+' or ' ${ }^{\prime}$ ' etc.
- If we use ' \circ ' is the binary operation, then $f(x, y)$ is denoted by $x \circ y$
- If $S=X \times X$, then we say that X is closed w.r.t. the binary operation

Set \& Structure

Definition

A set is a well defined collection of objects.

Definition

An algebraic structure is a set together with (a)some binary operation(s).

Group

Definition

(1) Let G be a non-empty set with a binary operation \circ defined on it. Then (G, \circ) is said to be a groupoid or magma if \circ is closed i.e., if $\circ: G \times G \longrightarrow G$.

Group

Definition

(1) Let G be a non-empty set with a binary operation \circ defined on it. Then (G, \circ) is said to be a groupoid or magma if \circ is closed
i.e., if $\circ: G \times G \longrightarrow G$.
(1) A set G with an operation \circ is said to be a semigroup if G is a groupoid and \circ is associative.

Group

Definition

(1) Let G be a non-empty set with a binary operation \circ defined on it. Then (G, \circ) is said to be a groupoid or magma if \circ is closed i.e., if $\circ: G \times G \longrightarrow G$.
(1) A set G with an operation \circ is said to be a semigroup if G is a groupoid and \circ is associative.
(iil A set G with an operation \circ is said to be a monoid if G is a semigroup and \exists an element $e \in G_{m}$ S/t $g . e=e . g=g \forall g \in G$.

Group

Definition

(1) Let G be a non-empty set with a binary operation \circ defined on it. Then (G, \circ) is said to be a groupoid or magma if \circ is closed i.e., if $\circ: G \times G \longrightarrow G$.
(1) A set G with an operation \circ is said to be a semigroup if G is a groupoid and \circ is associative.
(III) A set G with an operation \circ is said to be a monoid if G is a semigroup and \exists an element $e \in G_{m} \mathrm{~S} / \mathrm{t} g . e=e . g=g \forall g \in G$.
(i0) For each $x \in G, \exists$ an element $y \in G$ s/t $y \circ x=x \circ y=e$.
Usually, y is denoted by x^{-1}.
If G satisfies all the above, it is said to be a Group.

Group

Definition

(1) Let G be a non-empty set with a binary operation \circ defined on it. Then (G, \circ) is said to be a groupoid or magma if \circ is closed i.e., if $\circ: G \times G \longrightarrow G$.
(1) A set G with an operation \circ is said to be a semigroup if G is a groupoid and \circ is associative.
(III) A set G with an operation \circ is said to be a monoid if G is a semigroup and \exists an element $e \in G_{m} \mathrm{~S} / \mathrm{t} g . e=e . g=g \forall g \in G$.
(D) For each $x \in G, \exists$ an element $y \in G$ s/t $y \circ x=x \circ y=e$.

Usually, y is denoted by x^{-1}.
If G satisfies all the above, it is said to be a Group.
If $x \circ y=y \circ x \forall x, y \in G, G$ is called abelian or commutative group.

Exercises

Exercise

(1) Give an example of a groupoid which is not a semigroup.

Exercises

Exercise

(1) Give an example of a groupoid which is not a semigroup.
(2) Give an example of a semigroup which is not a monoid.

Exercises

Exercise

(1) Give an example of a groupoid which is not a semigroup.
(2) Give an example of a semigroup which is not a monoid.
(3) Give an example of a monoid which is not a group.

Exercises

Exercise

(1) Give an example of a groupoid which is not a semigroup.
(2) Give an example of a semigroup which is not a monoid.
(3) Give an example of a monoid which is not a group.
(4) Give an example of a semigroup which is not a group.

Group

Example

(1) $(\mathbb{Z},+)$
(2) $(\mathbb{Q},+),\left(\mathbb{Q}^{*}, \cdot\right)$
(3) $(\mathbb{R},+),(\mathbb{C},+),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right)$

Group

Example

(1) $(\mathbb{Z},+)$
(2) $(\mathbb{Q},+),\left(\mathbb{Q}^{*}, \cdot\right)$
(3) $(\mathbb{R},+),(\mathbb{C},+),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right)$
(4) $\left(\mathbb{Z}_{n},+\right)$
(5) $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$

Group

Example

(1) $(\mathbb{Z},+)$
(2) $(\mathbb{Q},+),\left(\mathbb{Q}^{*}, \cdot\right)$
(3) $(\mathbb{R},+),(\mathbb{C},+),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right)$
(4) $\left(\mathbb{Z}_{n},+\right)$
(5) $\left(\mathbb{Z}_{p}^{*}, \cdot\right)$
(6) $(\{1,-1\}, \cdot)$

Group

```
Example
(1) \((\mathbb{Z},+)\)
(2) \((\mathbb{Q},+),\left(\mathbb{Q}^{*}, \cdot\right)\)
(3) \((\mathbb{R},+),(\mathbb{C},+),\left(\mathbb{R}^{*}, \cdot\right),\left(\mathbb{C}^{*}, \cdot\right)\)
(4) \(\left(\mathbb{Z}_{n},+\right)\)
(5) \(\left(\mathbb{Z}_{p}^{*}, \cdot\right)\)
(6) \((\{1,-1\}, \cdot)\)
(7) \(\left(S_{n}, \circ\right)\)
```


Group

Example (S_{3})

Let us consider the following important example S_{3} under composition of functions.

$$
\begin{aligned}
& \rho_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \quad \rho_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad \rho_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
& \mu_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), \quad \mu_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), \quad \mu_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
\end{aligned}
$$

Group

Example (S_{3})

\circ	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}			
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}			
ρ_{1}									

Group

Example (S_{3})

\circ	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{0}	ρ_{0}	ρ_{1}	ρ_{2}	μ_{1}	μ_{2}	μ_{3}
ρ_{1}	ρ_{1}	ρ_{2}	ρ_{0}	μ_{3}	μ_{1}	μ_{2}
ρ_{2}	ρ_{2}	ρ_{0}	ρ_{1}	μ_{2}	μ_{3}	μ_{1}
μ_{1}	μ_{1}	μ_{2}	μ_{3}	ρ_{0}	ρ_{1}	ρ_{2}
μ_{2}	μ_{2}	μ_{3}	μ_{1}	ρ_{2}	ρ_{0}	ρ_{1}
μ_{3}	μ_{3}	μ_{1}	μ_{2}	ρ_{1}	ρ_{2}	ρ_{0}

Group

Theorem

Let (G, \circ) be a group and e_{ℓ} be a left identity and for each $x \in G, x_{\ell}^{-1}$ denote the left inverse of x.
(1) Then e_{ℓ} is the ! two sided identity in G.
(1) x_{ℓ}^{-1} is the ! two sided inverse of x for each $x \in G$.

Group

Theorem

Let (G, \circ) be a group and e_{ℓ} be a left identity and for each $x \in G, x_{\ell}^{-1}$ denote the left inverse of x.
(1) Then e_{ℓ} is the! two sided identity in G.
(1) x_{ℓ}^{-1} is the ! two sided inverse of x for each $x \in G$.

Note:

(a) If e^{\prime} is any identify whether left or right then $e^{\prime}=e_{\ell}$.

Group

Theorem

Let (G, \circ) be a group and e_{ℓ} be a left identity and for each $x \in G, x_{\ell}^{-1}$ denote the left inverse of x.
(1) Then e_{ℓ} is the! two sided identity in G.
(1) x_{ℓ}^{-1} is the ! two sided inverse of x for each $x \in G$.

Note:

(a) If e^{\prime} is any identify whether left or right then $e^{\prime}=e_{\ell}$.
(D) If y is any left or right inverse of x then $y=x_{\ell}^{-1}$.

Some Preliminary Lemmas

Lemma

If $(G, \cdot)[G]$ is a group, then
(1) The identity element of G is !.
(1) Every $a \in G$ has a! inverse in G.
(II) For every $a \in G,\left(a^{-1}\right)^{-1}=a$.
(D) For all $a, b \in G,(a . b)^{-1}=b^{-1} \cdot a^{-1}$

Some Preliminary Lemmas

Lemma

If $(G, \cdot)[G]$ is a group, then
(i) The identity element of G is !.
(ii) Every $a \in G$ has a ! inverse in G.
(III) For every $a \in G,\left(a^{-1}\right)^{-1}=a$.
(v) For all $a, b \in G,(a . b)^{-1}=b^{-1} \cdot a^{-1}$

Proof.

- First, we assume that $e \& e^{\prime}$ are two identities of G.
- For every $a \in G$, e. $a=a$. So, e. $e^{\prime}=e^{\prime}$, assuming e as an identity element.

Some Preliminary Lemmas

Lemma

If (G, \cdot) [G] is a group, then
(i) The identity element of G is !.
(ii) Every $a \in G$ has a ! inverse in G.
(III) For every $a \in G,\left(a^{-1}\right)^{-1}=a$.
(v) For all $a, b \in G,(a . b)^{-1}=b^{-1} \cdot a^{-1}$

Proof.

- First, we assume that $e \& e^{\prime}$ are two identities of G.
- For every $a \in G$, e.a $=a$. So, e. $e^{\prime}=e^{\prime}$, assuming e as an identity element.
- Similarly, for every $b \in G, b . e^{\prime}=b$. So, e. $e^{\prime}=e$, assuming e^{\prime} as an identity element.
Thus, we have $e^{\prime}=e . e^{\prime}=e$, i.e., $e=e^{\prime}$.

Some Preliminary Lemmas

Lemma

Let (G, \circ) be a group and $c \in G s / t c^{2}=c$. Then $c=e$, where e is the identity element of G.

Some Preliminary Lemmas

Lemma

Let (G, \circ) be a group and $c \in G s / t c^{2}=c$. Then $c=e$, where e is the identity element of G.

Proof.

$$
\begin{aligned}
\because c^{2} & =c \\
\therefore c \cdot c & =c \\
\Rightarrow c^{-1} \cdot(c \cdot c) & =c^{-1} \cdot c \\
\Rightarrow\left(c^{-1} \cdot c\right) \cdot c & =e \\
\Rightarrow e \cdot c & =e
\end{aligned}
$$

Thus, $c=e$.

Some Preliminary Lemmas

Lemma

Let (G, \circ) be a group and $c \in G s / t c^{2}=c$. Then $c=e$, where e is the identity element of G.

Proof.

$$
\begin{aligned}
\because c^{2} & =c \\
\therefore c \cdot c & =c \\
\Rightarrow c^{-1} \cdot(c \cdot c) & =c^{-1} \cdot c \\
\Rightarrow\left(c^{-1} \cdot c\right) \cdot c & =e \\
\Rightarrow e \cdot c & =e
\end{aligned}
$$

Thus, $c=e$.
Replace c by $x . x_{\ell}^{-1}$, you get x_{ℓ} is the right inverse of x

Group

Cancellation Law

Let (G, \circ) be a group. Then for each triplet $x, y, z \in G$
(1) $x \circ y=x \circ z \Rightarrow y=z \quad$ (left cancellation law)
(1) $y \circ x=z \circ x \Rightarrow y=z \quad$ (right cancellation law)

Subgroup

Definition

A subset H of a group G is said to be a subgroup of G if H itself forms a group under the restricted binary operation in G.

Subgroup

Definition

A subset H of a group G is said to be a subgroup of G if H itself forms a group under the restricted binary operation in G.

Lemma

A non-empty subset H of the group G is a subgroup of G iff
(1) $a, b \in H \Rightarrow a . b \in H$;
(1) $a \in H \Rightarrow a^{-1} \in H$.

Subgroup

Lemma

If $(\phi \neq) H \subset G \& \# H<\infty$ and H is closed under multiplication, then $H \leq G$.

Subgroup

Lemma

If $(\phi \neq) H \subset G \& \# H<\infty$ and H is closed under multiplication, then $H \leq G$.
Note: The lemma may not be true if H is not finite.

Subgroup

Lemma

If $(\phi \neq) H \subset G \& \# H<\infty$ and H is closed under multiplication, then $H \leq G$.
Note: The lemma may not be true if H is not finite. $(\mathbb{N},+)$ and (\mathbb{N}, \cdot)

Subgroup

Example

(1) $(\mathbb{Z},+) \leq(\mathbb{R},+)$
(2) $\left(\mathbb{Q}^{*}, \cdot\right) \leq\left(\mathbb{R}^{*}, \cdot\right)$
(3) Let $G=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, where $a, b, c, d \in \mathbb{R}$ and $a d-b c \neq 0$. G is a group under matrix multiplication.
$H=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)$, and $b \in \mathbb{R}$. Then $H \leq G$.

Subgroup

Proposition

Let (G, \cdot) be a group and T be a non-void subset of G. Then the following are equivalent:
(1) $T \leq G$
(1) For each $x, y \in T, x \cdot y \& x^{-1} \in T$
(III For each $x, y \in T, x \cdot y^{-1} \in T$

Subgroup

Definition

Let G be a group and $S, T \subset G$. We then define

$$
\begin{gathered}
S \cdot T=\left\{\begin{aligned}
z \in G \mid z=x \cdot y & \text { for } x \in S, \& y \in T \\
\phi, & \text { if either } S \text { or } T=\phi
\end{aligned}\right. \\
S^{-1}=\left\{\begin{aligned}
z \in G, & z^{-1} \in S \\
\phi, & \text { if } S=\phi
\end{aligned}\right.
\end{gathered}
$$

Subgroup

Proposition

Let G be a group and T be a non-void subset of G. Then the following are equivalent:
(i) $T \leq G$
(ii) $T \cdot T \subset T \& T^{-1} \subset T$
(III) $T \cdot T^{-1} \subset T$

Subgroup

Proposition

Let G be a group and T be a non-void subset of G. Then the following are equivalent:
(i) $T \leq G$
(ii) $T \cdot T \subset T \& T^{-1} \subset T$
(III) $T \cdot T^{-1} \subset T$

Exercise

Let G be a group and $H \& K \leq G$. Then $H \cdot K$ is a subgroup of G iff $H \cdot K=K \cdot H$.

Subgroup

Proposition

Let G be a group and T be a non-void subset of G. Then the following are equivalent:
(i) $T \leq G$
(ii) $T \cdot T \subset T \& T^{-1} \subset T$
(III) $T \cdot T^{-1} \subset T$

Exercise

Let G be a group and $H \& K \leq G$. Then $H \cdot K$ is a subgroup of G iff $H \cdot K=K \cdot H$.

Exercise

Let $\left\{T_{\alpha}, \alpha \in \lambda\right\}$ be a collection of subgroups of G. Then $\bigcap\left\{T_{\alpha}, \alpha \in \lambda\right\}$ is also a subgroup of G.

Subgroup

Subgroup Generated by a Subset

Let G be a group and S be a subset of G. Then there is a smallest ${ }^{1}$ subgroup T of G containing S. Then T is said to be generated by S and is denoted by $\langle S\rangle$.
${ }^{1} T$ is the smallest in the following sense:
if H is a subgroup and $S \subset H$ then $T \subset H$

Subgroup Generated by a Subset

Let G be a group and S be a subset of G. Then there is a smallest ${ }^{1}$ subgroup T of G containing S. Then T is said to be generated by S and is denoted by $\langle S\rangle$.

Theorem

Let G be a group and S be a non-void subset of G. Then $\langle S\rangle$ consists of all finite product of the form

$$
x_{1} \cdot x_{2} \ldots x_{n}, \text { for } n \in \mathbb{N} \& x_{i} \in S \cup S^{-1}
$$

[^0]
Subgroup Generated by a Subset

Let G be a group and S be a subset of G. Then there is a smallest ${ }^{1}$ subgroup T of G containing S. Then T is said to be generated by S and is denoted by $\langle S\rangle$.

Theorem

Let G be a group and S be a non-void subset of G. Then $\langle S\rangle$ consists of all finite product of the form

$$
x_{1} \cdot x_{2} \ldots x_{n}, \text { for } n \in \mathbb{N} \& x_{i} \in S \cup S^{-1}
$$

Theorem

If G is an abelian group and $(\phi \neq) S \subset G$, then $\langle S\rangle$ consists of all elements of the form $x_{1}^{r_{1}} . x_{2}^{r_{2}} \ldots \ldots x_{k}^{r_{k}}, x_{i} \neq x_{j}, r_{i} \in \mathbb{Z}$.

[^1]
Cyclic Group

Theorem

Let G be a group and $a \in G$. Then $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G and is the smallest subgroup of G that contains a.

Cyclic Group

Theorem

Let G be a group and $a \in G$. Then $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ is a subgroup of G and is the smallest subgroup of G that contains a.

Definition

(1) Let G be a group and $a \in G$. Then the smallest subgroup $H=\left\{a^{n} \mid n \in \mathbb{Z}\right\}$ of G which contains a is called the cyclic subgroup of G generated by a.
(2) An element $a \in G$ generates G and is a generator for G if $\langle a\rangle=G$.
(3) A group G is cyclic if there is some element $a \in G$ that generates G.

Subgroup

Notation:

- a^{n} under multiplication $a^{n}=\overbrace{a \cdot a \cdot \cdots \cdot a}^{n-\text { times }}$
- a^{n} under addition $a^{n}=n \cdot a=\underbrace{a+a+\cdots+a}_{n-\text { times }}$
- $a \cdot b^{-1}$ under addition

Subgroup

Notation:

- a^{n} under multiplication $a^{n}=\overbrace{a \cdot a \cdot \cdots \cdot a}^{n-\text { times }}$
- a^{n} under addition $a^{n}=n \cdot a=\underbrace{a+a+\cdots+a}_{n-\text { times }}$
- $a \cdot b^{-1}$ under addition $a-b$

Cyclic Group

Definition

(1) A group G is finite $i f|G|$ or \# G is finite. The number of elements in a finite group is called its order.
(2) A group G is cyclic if $\exists \alpha \in G s / t$ for each $\beta \in G, \exists$ integer i with $\beta=\alpha^{i}$. Such an element α is called a generator of G.

Cyclic Group

Definition

(1) A group G is finite if $|G|$ or \# G is finite. The number of elements in a finite group is called its order.
(2) A group G is cyclic if $\exists \alpha \in G s / t$ for each $\beta \in G, \exists$ integer i with $\beta=\alpha^{i}$. Such an element α is called a generator of G.
(3) Let $\alpha \in G$. The order of α is defined to be the least positive integer $t s / t \alpha^{t}=e$, provided that such an integer exists.

Cyclic Group

Definition

(1) A group G is finite if $|G|$ or \# G is finite. The number of elements in a finite group is called its order.
(2) A group G is cyclic if $\exists \alpha \in G s / t$ for each $\beta \in G, \exists$ integer i with $\beta=\alpha^{i}$. Such an element α is called a generator of G.
(3) Let $\alpha \in G$. The order of α is defined to be the least positive integer $t \boldsymbol{s} / t \alpha^{t}=e$, provided that such an integer exists. If such a t does not exist, then the order of α is defined to be ∞.

Cyclic Subgroup

Example

(1) Consider the multiplicative group $\mathbb{Z}_{19}^{*}=\{1,2, \cdots, 18\}$ of order 18 .

Cyclic Subgroup

Example

(1) Consider the multiplicative group $\mathbb{Z}_{19}^{*}=\{1,2, \cdots, 18\}$ of order 18.
(2) Consider the multiplicative group $G=\left(\mathbb{Z}_{26}^{*}, \cdot\right)$ and generate the above table for G.

Cyclic Group

Theorem

Every subgroup H of a cyclic group G is also cyclic.

Cyclic Group

Theorem

Every subgroup H of a cyclic group G is also cyclic.

In fact, if G is a cyclic group of order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

Cyclic Group

Theorem

Every subgroup H of a cyclic group G is also cyclic.

In fact, if G is a cyclic group of order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

- Let $\langle a\rangle=G$.
- If H is $\{e\}$, then there is nothing to prove. So, we assume $H \neq\{e\}$.
- Then $\exists u \in H$, э $u \neq e$
- We have now 2 cases:

Cyclic Group

Theorem

Every subgroup H of a cyclic group G is also cyclic.

In fact, if G is a cyclic group of order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

- Let $\langle a\rangle=G$.
- If H is $\{e\}$, then there is nothing to prove. So, we assume $H \neq\{e\}$.
- Then $\exists u \in H$, э $u \neq e$
- We have now 2 cases:

Case-1: G is infinite cyclic group

- ヨ $n_{0} \ni u=a^{n_{0}}$.
- $\because u \in H \Rightarrow u^{-1} \in H$ as $H \leq G$
- Let $T=\left\{n \in \mathbb{N}: n>0, a^{n} \in H\right\}$
- $T \neq \phi$

Cyclic Group

Theorem

Every subgroup H of a cyclic group G is also cyclic.

In fact, if G is a cyclic group of order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.

- Let $\langle a\rangle=G$.
- If H is $\{e\}$, then there is nothing to prove. So, we assume $H \neq\{e\}$.
- Then $\exists u \in H$, э $u \neq e$
- We have now 2 cases:

Case-1: G is infinite cyclic group

- ヨ $n_{0} \ni u=a^{n_{0}}$.
- $\because u \in H \Rightarrow u^{-1} \in H$ as $H \leq G$
- Let $T=\left\{n \in \mathbb{N}: n>0, a^{n} \in H\right\}$
- $T \neq \phi$ as n_{0} or $-n_{0} \in T$

Cyclic Group

ase-1: G is infinite cyclic group

- $\because \mathbb{N}$ is well-ordered,

Cyclic Group

ase-1: G is infinite cyclic group

- $\because \mathbb{N}$ is well-ordered, $\therefore T$ has a least element, say k_{0}.
- Then $a^{k_{0}} \in H$ and $1 \leq n<k_{0}, a^{n} \notin H$

Cyclic Group

ase-1: G is infinite cyclic group

- $\because \mathbb{N}$ is well-ordered, $\therefore T$ has a least element, say k_{0}.
- Then $a^{k_{0}} \in H$ and $1 \leq n<k_{0}, a^{n} \notin H$
- Again, let M be a cyclic group generated by $a^{k_{0}}$
- Then, $\because a^{k_{0}} \in H$ and H is a subgroup, $M \subset H$
- Now, let $v \in H$. Then $v=a^{m}$ for $m \in \mathbb{Z}$

Cyclic Group

ase-1: G is infinite cyclic group

- $\because \mathbb{N}$ is well-ordered, $\therefore T$ has a least element, say k_{0}.
- Then $a^{k_{0}} \in H$ and $1 \leq n<k_{0}, a^{n} \notin H$
- Again, let M be a cyclic group generated by $a^{k_{0}}$
- Then, $\because a^{k_{0}} \in H$ and H is a subgroup, $M \subset H$
- Now, let $v \in H$. Then $v=a^{m}$ for $m \in \mathbb{Z}$

$$
m=q k_{0}+r, \text { where } 0 \leq r<k_{0}
$$

Cyclic Group

ase-1: G is infinite cyclic group

- $\because \mathbb{N}$ is well-ordered, $\therefore T$ has a least element, say k_{0}.
- Then $a^{k_{0}} \in H$ and $1 \leq n<k_{0}, a^{n} \notin H$
- Again, let M be a cyclic group generated by $a^{k_{0}}$
- Then, $\because a^{k_{0}} \in H$ and H is a subgroup, $M \subset H$
- Now, let $v \in H$. Then $v=a^{m}$ for $m \in \mathbb{Z}$

$$
m=q k_{0}+r, \text { where } 0 \leq r<k_{0}
$$

- Now, $a^{m} \in H$ and $a^{q k_{0}}=\left(a^{k_{0}}\right)^{q} \in H$

Cyclic Group

ase-1: G is infinite cyclic group

- $\because \mathbb{N}$ is well-ordered, $\therefore T$ has a least element, say k_{0}.
- Then $a^{k_{0}} \in H$ and $1 \leq n<k_{0}, a^{n} \notin H$
- Again, let M be a cyclic group generated by $a^{k_{0}}$
- Then, $\because a^{k_{0}} \in H$ and H is a subgroup, $M \subset H$
- Now, let $v \in H$. Then $v=a^{m}$ for $m \in \mathbb{Z}$

$$
m=q k_{0}+r, \text { where } 0 \leq r<k_{0}
$$

- Now, $a^{m} \in H$ and $a^{q k_{0}}=\left(a^{k_{0}}\right)^{q} \in H$ So, $a^{m-q k_{0}} \in H \Rightarrow a^{r} \in H$
- By minimal property of k_{o} we must have $r=0$. So $m=q k_{0}$
- Then, $a^{m}=\left(a^{k_{0}}\right)^{q} \in M$. Then $H \subset M \Rightarrow M=H$.

Thus, H is a cyclic subgroup generated by $a^{k_{0}}$.

Cyclic Group

ase-2: G is finite cyclic group of order m

- Then $G=\left\{e, a, a^{2}, \ldots a^{m-1}\right\}$.
- Let $T=\left\{r \in \mathbb{N}: a^{r} \in H, 1 \leq r \leq m-1\right\}$
- Then $T \neq \phi \because H \neq \phi$.
- Let k_{0} be the minimum value of $r, \mathrm{~s} / \mathrm{t} a^{r} \in H$.
- $a^{k_{0}} \in H$.
- Then by above H is cyclic subgroup generated by $a^{k_{0}}$.

Cyclic Group

Example

(1) $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$ are cyclic groups

Cyclic Group

Example

(1) $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$ are cyclic groups
(2) $(\mathbb{Z} \times \mathbb{Z},+)$ is not cyclic group. However, it is finitely generated.

Cyclic Group

Example

(1) $(\mathbb{Z},+)$ and $\left(\mathbb{Z}_{n},+\right)$ are cyclic groups
(2) $(\mathbb{Z} \times \mathbb{Z},+)$ is not cyclic group. However, it is finitely generated. $S=\{(1,0),(0,1)\}$ generates $\mathbb{Z} \times \mathbb{Z}$
(3) $(\mathbb{Q},+) \&\left(Q^{*}, \cdot\right)$ are not finitely generated.

Properties of Generators of \mathbb{Z}_{n}^{*}

(1) \mathbb{Z}_{n}^{*} has a generator iff $n=2,4, p^{k}$ or $2 p^{k}$, where p is an odd prime and $k \geq 1$. In particular, if p is a prime, then \mathbb{Z}_{p}^{*} has a generator.

Properties of Generators of \mathbb{Z}_{n}^{*}

(1) \mathbb{Z}_{n}^{*} has a generator iff $n=2,4, p^{k}$ or $2 p^{k}$, where p is an odd prime and $k \geq 1$. In particular, if p is a prime, then \mathbb{Z}_{p}^{*} has a generator.
(1) If α is a generator of \mathbb{Z}_{n}^{*}, then $\mathbb{Z}_{n}^{*}=\left\{\alpha^{i} \bmod n: 0 \leq i \leq \phi(n)-1\right\}$.

Coset

Definition

Let G be a group and $H \leq G$. For $a, b \in G$, we say that a is congruent to $b \bmod H$, i.e., $a \equiv b \bmod H$ if $a \cdot b^{-1} \in H$.

Coset

Definition

Let G be a group and $H \leq G$. For $a, b \in G$, we say that a is congruent to $b \bmod H$, i.e., $a \equiv b \bmod H$ if $a . b^{-1} \in H$.

Lemma

The relation $a \equiv b \bmod H$ is an equivalence relation.

Coset

Definition

Let G be a group and $H \leq G$. For $a, b \in G$, we say that a is congruent to $b \bmod H$, i.e., $a \equiv b \bmod H$ if $a . b^{-1} \in H$.

Lemma

The relation $a \equiv b \bmod H$ is an equivalence relation.

Definition

If $H \leq G, a \in G$, then

$$
H a=\{h a \mid h \in H\} \quad[a H=\{a h \mid h \in H\}] .
$$

$H a[a H]$ is called a right [left] coset of H in G.

Coset

Lemma
If $H \leq G$, then

$$
H a=\{x \in G \mid a \equiv x \quad \bmod H\}
$$

Coset

```
Lemma
If \(H \leq G\), then
```

$$
H a=\{x \in G \mid a \equiv x \quad \bmod H\}
$$

Proof.

Let $[a]=\{x \in G \mid a \equiv x \bmod H\}$. First, we prove that $H a \subset[a]$. If $h \in H, h a \in H$. Now we see $a(h a)^{-1}=a\left(a^{-1} h^{-1}\right)=h^{-1} \in H, \because H \leq G$.

Coset

```
Lemma
If H\leqG, then
```

$$
H a=\{x \in G \mid a \equiv x \quad \bmod H\}
$$

Proof.

Let $[a]=\{x \in G \mid a \equiv x \bmod H\}$. First, we prove that $H a \subset[a]$. If $h \in H, h a \in H$. Now we see $a(h a)^{-1}=a\left(a^{-1} h^{-1}\right)=h^{-1} \in H, \because H \leq G$. By definition of congruence, $h a \in[a]$ for every $h \in H$ and so $H a \subset[a]$.

Coset

Lemma

If $H \leq G$, then

$$
H a=\{x \in G \mid a \equiv x \quad \bmod H\}
$$

Proof.

Let $[a]=\{x \in G \mid a \equiv x \bmod H\}$. First, we prove that $H a \subset[a]$.
If $h \in H, h a \in H$. Now we see $a(h a)^{-1}=a\left(a^{-1} h^{-1}\right)=h^{-1} \in H, \because H \leq G$.
By definition of congruence, $h a \in[a]$ for every $h \in H$ and so $H a \subset[a]$.
Next we assume that $x \in[a]$. Thus $a x^{-1} \in H$, so $\left(a x^{-1}\right)^{-1}=x a^{-1} \in H$, i.e., $x a^{-1}=h$ for some $h \in H$.
$\left(x a^{-1}\right) a=h a \Rightarrow x=h a$.
Thus, $[a] \subset H a$.
Thus, we have $[a]=H a$.

Coset

Lemma

If $H \leq G$, then

$$
H a=\{x \in G \mid a \equiv x \quad \bmod H\}
$$

Proof.

Let $[a]=\{x \in G \mid a \equiv x \bmod H\}$. First, we prove that $H a \subset[a]$.
If $h \in H, h a \in H$. Now we see $a(h a)^{-1}=a\left(a^{-1} h^{-1}\right)=h^{-1} \in H, \because H \leq G$.
By definition of congruence, $h a \in[a]$ for every $h \in H$ and so $H a \subset[a]$.
Next we assume that $x \in[a]$. Thus $a x^{-1} \in H$, so $\left(a x^{-1}\right)^{-1}=x a^{-1} \in H$, i.e., $x a^{-1}=h$ for some $h \in H$.
$\left(x a^{-1}\right) a=h a \Rightarrow x=h a$.
Thus, $[a] \subset H a$.
Thus, we have $[a]=H a$.
Thus, any 2 right cosets of H in G are either identical or have no elementin commons

Coset

Exercise

Prove that there exists a bijection $f: a H \rightarrow H b$ and hence there exists a bijection from $a H \leftrightarrow b H$, for any $a, b \in G$.

Coset

Exercise

Prove that there exists a bijection $f: a H \rightarrow H b$ and hence there exists a bijection from $a H \leftrightarrow b H$, for any $a, b \in G$.

Solution

Hint:

- $f: a H \rightarrow H b$ given by $u \mapsto a^{-1} u b$
- Prove that f is injective as well as onto.

Coset

Exercise

Prove that there exists a bijection $f: a H \rightarrow H b$ and hence there exists a bijection from $a H \leftrightarrow b H$, for any $a, b \in G$.

Solution

Hint:

- $f: a H \rightarrow H b$ given by $u \mapsto a^{-1} u b$
- Prove that f is injective as well as onto.
- By taking $b=e$, there is a bijection $f_{a}: a H \rightarrow H$.
- So, there is a bijection $f_{b}: b H \rightarrow H$.
- Then $f_{b}^{-1} \circ f_{a}: a H \rightarrow b H$ is a bijection.

Coset

Proposition

Let G be a group and $H \leq G \& a, b \in G$. The following are equivalent:
(7) $a \cdot H=b \cdot H$
(I) $a^{-1} b \in H\left[\right.$ or $\left.b^{-1} a \in H\right]$
(ii) $a \in b . H$ [or $b \in a . H]$

Coset

Proposition

Let G be a group and $H \leq G \& a, b \in G$. The following are equivalent:$a . H=b . H$
(I) $a^{-1} b \in H\left[\right.$ or $\left.b^{-1} a \in H\right]$
(ii) $a \in b . H[$ or $b \in a . H]$

Proof.

Hint:

- (i) $\Rightarrow(i i)$

$$
b \in b H=a H . \text { So, } \exists h \in H \ni b=a h
$$

- (ii) \Rightarrow (iii)
$b^{-1} a \in H \Rightarrow \exists h \in H \ni b^{-1} a=h$
- (iii) $\Rightarrow(i)$
$\because a \in b H \therefore a=b h_{0}$, for some $h_{0} \in H$. Now, PT $a H \subset b H \& b H \subset a H$

Coset

Theorem

Let G be a group and $H \leq G$. For each $a \in G$,
(1) $a \in a H$
(1) For any pair $a, b \in G$, either $a H=b H$ or $a H \cap b H=\phi$
(II) $\cup\{a H \ni a \in G\}=G$
(D) $\{a H \ni a \in G\}$ is a partition of G.

Coset

Theorem

Lagrange's Theorem: If G is a finite group \& $H \leq G$, then

$$
\# H \mid \# G[o r \circ(H) \mid \circ(G)]
$$

Hence, if $a \in G$, the order of a divides $\# G$.

Coset

Theorem

Lagrange's Theorem: If G is a finite group \& $H \leq G$, then

$$
\# H \mid \# G[o r \circ(H) \mid \circ(G)]
$$

Hence, if $a \in G$, the order of a divides $\# G$.

Proof.

- Let $x_{1} H, x_{2} H, \ldots$ be the set of distinct left cosets of H in G
- $\bigcup_{i=1}^{k} x_{i} H=G$ and $x_{i} H \cap x_{j} H=\phi$ for $i \neq j$
- $\because\left|x_{i} H\right|=|H|=m$ (say)
- $\therefore|G|=\sum_{i=1}^{k}\left|x_{i} H\right|=\sum_{i=1}^{k} m=m k=n$ (say)
\# ${ }^{\mid} \mid \# G$

Subgroup

Corollary

(1) Let (G, \cdot) be a finite group of order p, where p is a prime. Then G is cyclic and hence abelian.

Subgroup

Corollary

(1) Let (G, \cdot) be a finite group of order p, where p is a prime. Then G is cyclic and hence abelian.
(2) Let (G, \cdot) be a finite group and $g \in G$ be an arbitrary element. Then order of g is a divisor of order of G.

Subgroup

Corollary

(1) Let (G, \cdot) be a finite group of order p, where p is a prime. Then G is cyclic and hence abelian.
(2) Let (G, \cdot) be a finite group and $g \in G$ be an arbitrary element. Then order of g is a divisor of order of G.
(3) Let p be a prime number and $\operatorname{gcd}(a, p)=1$, where $a \in \mathbb{N}$. Then $a^{p-1} \equiv 1 \bmod p$.

Subgroup

Corollary

(1) Let (G, \cdot) be a finite group of order p, where p is a prime. Then G is cyclic and hence abelian.
(2) Let (G, \cdot) be a finite group and $g \in G$ be an arbitrary element. Then order of g is a divisor of order of G.
(3) Let p be a prime number and $\operatorname{gcd}(a, p)=1$, where $a \in \mathbb{N}$. Then $a^{p-1} \equiv 1 \bmod p$.
(1) Let p be prime. Then $(p-1)!\equiv-1 \bmod p$.

Subgroup

Homomorphism

Definition

Let ($\left.G_{1}, \cdot\right)$ and ($\left.G_{2}, \cdot\right)$ be groups and $f: G_{1} \rightarrow G_{2}$ be a function. Then
(1) f is said to be a homomorphism iff for each $a, b \in G_{1}$,

$$
f(a . b)=f(a) \cdot f(b) .
$$

Homomorphism

Definition

Let $\left(G_{1}, \cdot\right)$ and $\left(G_{2}, \cdot\right)$ be groups and $f: G_{1} \rightarrow G_{2}$ be a function. Then
(1) f is said to be a homomorphism iff for each $a, b \in G_{1}$,

$$
f(a . b)=f(a) \cdot f(b) .
$$

(2) A homomorphism f is said to be monomorphism (epimorphism) iff f is injective (surjective).

Homomorphism

Definition

Let $\left(G_{1}, \cdot\right)$ and $\left(G_{2}, \cdot\right)$ be groups and $f: G_{1} \rightarrow G_{2}$ be a function.
Then
(1) f is said to be a homomorphism iff for each $a, b \in G_{1}$,

$$
f(a \cdot b)=f(a) \cdot f(b) .
$$

(2) A homomorphism f is said to be monomorphism (epimorphism) iff f is injective (surjective).
(3) A homomorphism f is said to be isomorphism iff f is both monomorphism and an epimorphism.

Homomorphism

Definition

(4) A homomorphism f is said to be endomorphism if $G_{1}=G_{2}$.

Homomorphism

Definition

(9) A homomorphism f is said to be endomorphism if $G_{1}=G_{2}$.
(0) An isomorphism f is said to be automorphism if $G_{1}=G_{2}$.

Homomorphism

Definition

(4) A homomorphism f is said to be endomorphism if $G_{1}=G_{2}$.
(5) An isomorphism f is said to be automorphism if $G_{1}=G_{2}$.
(6) Two groups G_{1}, G_{2} are called homomorphic [isomorphic], if there exists an homomorphism [isomorphism] from G_{1} to G_{2}.

Homomorphism

Definition

(4) A homomorphism f is said to be endomorphism if $G_{1}=G_{2}$.
(5) An isomorphism f is said to be automorphism if $G_{1}=G_{2}$.
(6) Two groups G_{1}, G_{2} are called homomorphic [isomorphic], if there exists an homomorphism [isomorphism] from G_{1} to G_{2}.

If $G_{1} \& G_{2}$ are isomorphic, then we denote $G_{1} \approx G_{2}$.
One can also use the following notation for isomorphic group

$$
G_{1} \cong G_{2}, \quad \text { or } \quad G_{1} \cong G_{2}, \quad \text { or } \quad G_{1} \cong G_{2}
$$

Homomorphism

Proposition

Let G_{1}, G_{2}, G_{3} be groups and $f: G_{1} \rightarrow G_{2} \& g: G_{2} \rightarrow G_{3}$ be homomorphisms.

- Then $g \circ f: G_{1} \rightarrow G_{3}$ is also a homomorphism.
- Further, $g \circ f$ is a monomorphism (epimorphism) if g \& f are both injective (surjrctive).
- Thus, in particular if $f \& g$ are isomorphisms, so is $g \circ f$.
- Also, if f is isomorphism from $G_{1} \rightarrow G_{2}$, then $f^{-1}: G_{2} \rightarrow G_{1}$ is also an isomorphism.

Homomorphism

Proposition

Let G_{1}, G_{2}, G_{3} be groups and $f: G_{1} \rightarrow G_{2} \& g: G_{2} \rightarrow G_{3}$ be homomorphisms.

- Then $g \circ f: G_{1} \rightarrow G_{3}$ is also a homomorphism.
- Further, $g \circ f$ is a monomorphism (epimorphism) if g \& f are both injective (surjrctive).
- Thus, in particular if $f \& g$ are isomorphisms, so is $g \circ f$.
- Also, if f is isomorphism from $G_{1} \rightarrow G_{2}$, then $f^{-1}: G_{2} \rightarrow G_{1}$ is also an isomorphism.

Note: Let C be collections of groups. Define $G_{1} \sim G_{2}\left(G_{i} \in C\right)$ iff \exists an isomorphism $f: G_{1} \rightarrow G_{2}$. Verify that \sim is an equivalence relation.

Homomorphism

Proposition

Let G_{1}, G_{2}, G_{3} be groups and $f: G_{1} \rightarrow G_{2} \& g: G_{2} \rightarrow G_{3}$ be homomorphisms.

- Then $g \circ f: G_{1} \rightarrow G_{3}$ is also a homomorphism.
- Further, $g \circ f$ is a monomorphism (epimorphism) if g \& f are both injective (surjrctive).
- Thus, in particular if $f \& g$ are isomorphisms, so is $g \circ f$.
- Also, if f is isomorphism from $G_{1} \rightarrow G_{2}$, then $f^{-1}: G_{2} \rightarrow G_{1}$ is also an isomorphism.

Note: Let C be collections of groups. Define $G_{1} \sim G_{2}\left(G_{i} \in C\right)$ iff \exists an isomorphism $f: G_{1} \rightarrow G_{2}$. Verify that \sim is an equivalence relation.

Two isomorphic groups are absolutely indistinguishable. The main problem of geo theory is to decide whether to given groups are isomorphic or not

Homomorphism

Exercise

Let P be the set of all polynomials with integer coefficient. Then $(P,+)$ is a abelian group. Show that $(P,+)$ is isomorphic to $\left(\mathbb{Q}^{*}, \cdot\right) .\left[(P,+) \approx\left(\mathbb{Q}^{*}, \cdot\right)\right]$

Homomorphism

Exercise

Let P be the set of all polynomials with integer coefficient. Then $(P,+)$ is a abelian group. Show that $(P,+)$ is isomorphic to $\left(\mathbb{Q}^{*}, \cdot\right) .\left[(P,+) \approx\left(\mathbb{Q}^{*}, \cdot\right)\right]$

Normal Subgroup

Definition

If $H \leq G$, the index of H in G is the number of distinct right (or left) cosets of H in G.

We denote it by $i_{G}(H)$. In case G is a finite group,

$$
i_{G}(H)=\frac{\circ(G)}{\circ(H)} .
$$

Normal Subgroup

Definition

If $H \leq G$, the index of H in G is the number of distinct right (or left) cosets of H in G.

We denote it by $i_{G}(H)$. In case G is a finite group,

$$
i_{G}(H)=\frac{\circ(G)}{\circ(H)}
$$

Definition

Let G be a group and H be a subgroup of G. Then H is said to be a normal [or invariant] subgroup of G iff for each $x \in G, x H=H x$. $[H \mathbb{E} G]$

Normal Subgroup

Definition

If $H \leq G$, the index of H in G is the number of distinct right (or left) cosets of H in G.

We denote it by $i_{G}(H)$. In case G is a finite group,

$$
i_{G}(H)=\frac{\circ(G)}{\circ(H)}
$$

Definition

Let G be a group and H be a subgroup of G. Then H is said to be a normal [or invariant] subgroup of G iff for each $x \in G, x H=H x$. $[H \mathbb{E} G]$

- A subgroup H is a normal subgroup of G if $\forall g \in G$ and $h \in H, g h g^{-1}$

Normal Subgroup

Definition

If $H \leq G$, the index of H in G is the number of distinct right (or left) cosets of H in G.

We denote it by $i_{G}(H)$. In case G is a finite group,

$$
i_{G}(H)=\frac{\circ(G)}{\circ(H)}
$$

Definition

Let G be a group and H be a subgroup of G. Then H is said to be a normal [or invariant] subgroup of G iff for each $x \in G, x H=H x$. $[H \mathbb{E} G]$

- A subgroup H is a normal subgroup of G if $\forall g \in G$ and $h \in H, g h g^{-1}$
- If G is abelian, then every subgroup is normal.

Normal Subgroup

- If G is non-abelian, it may happen that $a H \neq H a$ for some $a \in G$.

Normal Subgroup

- If G is non-abelian, it may happen that $a H \neq H a$ for some $a \in G$.
- Consider the group (S_{3}, \circ)

$$
\begin{array}{lll}
\rho_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), & \rho_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), & \rho_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
\mu_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), & \mu_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), & \mu_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
\end{array}
$$

Normal Subgroup

- If G is non-abelian, it may happen that $a H \neq H a$ for some $a \in G$.
- Consider the group (S_{3}, \circ)

$$
\begin{array}{lll}
\rho_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), & \rho_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), & \rho_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \\
\mu_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right), & \mu_{2}=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right), & \mu_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
\end{array}
$$

- Let

$$
H=\left\{\rho_{0}=\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right), \quad \mu_{3}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right)\right\} \& a=\mu_{1}=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right.
$$

Quotient Group

Theorem

Let G be a group and H be a normal subgroup of G. Then the G / H of left cosets of H in G is a group under operation of set product.

Quotient Group

Theorem

Let G be a group and H be a normal subgroup of G. Then the G / H of left cosets of H in G is a group under operation of set product.

Proof.

Hint:

- Let $x H$ \& $y H \in G / H$. Prove that $(x H)(y H) \in G / H$
- The element $H=e H$ is the identity element of G / H
- Prove that $x^{-1} H$ is the inverse of $x H$

Definition

The G / H is called the quotient group of G by the normal subgroup H.

Quotient Group

Exercise

Let $(\mathbb{Z},+)$ be the additive group of integers. Any subgroup of \mathbb{Z} is of the form

Quotient Group

Exercise

Let $(\mathbb{Z},+)$ be the additive group of integers. Any subgroup of \mathbb{Z} is of the form $n \mathbb{Z}$ for $n \in \mathbb{Z}^{+}$. Then $n \mathbb{Z}$ is a normal subgroup.

Show that $(\mathbb{Z} / n \mathbb{Z},+)=\left(\mathbb{Z}_{n},+\right)$.

Quotient Group

Exercise

Let $(\mathbb{Z},+)$ be the additive group of integers. Any subgroup of \mathbb{Z} is of the form $n \mathbb{Z}$ for $n \in \mathbb{Z}^{+}$. Then $n \mathbb{Z}$ is a normal subgroup.

Show that $(\mathbb{Z} / n \mathbb{Z},+)=\left(\mathbb{Z}_{n},+\right)$.

Proposition

Let $\left(G_{1}, \cdot\right),\left(G_{2}, \cdot\right)$ be two groups and $f: G_{1} \rightarrow G_{2}$ be a homomorphism. Then
(1) $f\left(e_{1}\right)=e_{2}$, where e_{1}, e_{2} are the identities of G_{1}, G_{2} respectively.

Quotient Group

Exercise

Let $(\mathbb{Z},+)$ be the additive group of integers. Any subgroup of \mathbb{Z} is of the form $n \mathbb{Z}$ for $n \in \mathbb{Z}^{+}$. Then $n \mathbb{Z}$ is a normal subgroup.

Show that $(\mathbb{Z} / n \mathbb{Z},+)=\left(\mathbb{Z}_{n},+\right)$.

Proposition

Let $\left(G_{1}, \cdot\right),\left(G_{2}, \cdot\right)$ be two groups and $f: G_{1} \rightarrow G_{2}$ be a homomorphism. Then
(1) $f\left(e_{1}\right)=e_{2}$, where e_{1}, e_{2} are the identities of G_{1}, G_{2} respectively.
(I) for each $x \in G_{1}, f\left(x^{-1}\right)=(f(x))^{-1}$

Quotient Group

Exercise

Let $(\mathbb{Z},+)$ be the additive group of integers. Any subgroup of \mathbb{Z} is of the form $n \mathbb{Z}$ for $n \in \mathbb{Z}^{+}$. Then $n \mathbb{Z}$ is a normal subgroup.

Show that $(\mathbb{Z} / n \mathbb{Z},+)=\left(\mathbb{Z}_{n},+\right)$.

Proposition

Let $\left(G_{1}, \cdot\right),\left(G_{2}, \cdot\right)$ be two groups and $f: G_{1} \rightarrow G_{2}$ be a homomorphism. Then
(1) $f\left(e_{1}\right)=e_{2}$, where e_{1}, e_{2} are the identities of G_{1}, G_{2} respectively.
(I) for each $x \in G_{1}, f\left(x^{-1}\right)=(f(x))^{-1}$
(II) $\forall a \in G, n \in \mathbb{Z}, \quad f\left(a^{n}\right)=f(a)^{n}$

Quotient Group

Exercise

Let $(\mathbb{Z},+)$ be the additive group of integers. Any subgroup of \mathbb{Z} is of the form $n \mathbb{Z}$ for $n \in \mathbb{Z}^{+}$. Then $n \mathbb{Z}$ is a normal subgroup.

Show that $(\mathbb{Z} / n \mathbb{Z},+)=\left(\mathbb{Z}_{n},+\right)$.

Proposition

Let $\left(G_{1}, \cdot\right),\left(G_{2}, \cdot\right)$ be two groups and $f: G_{1} \rightarrow G_{2}$ be a homomorphism. Then
(1) $f\left(e_{1}\right)=e_{2}$, where e_{1}, e_{2} are the identities of G_{1}, G_{2} respectively.
(I) for each $x \in G_{1}, f\left(x^{-1}\right)=(f(x))^{-1}$
(II) $\forall a \in G, n \in \mathbb{Z}, \quad f\left(a^{n}\right)=f(a)^{n}$
(N) if $T \leq G_{1}, f(T) \leq G_{2}$

Detailed Study of Cyclic Group

Theorem

Let (G, \cdot) be a cyclic group ${ }^{a}$. Then
(i) $(G, \cdot) \cong(\mathbb{Z},+)$ iff G is infinite
(ii) $(G, \cdot) \cong\left(\mathbb{Z}_{n},+\right)$ iff G is finite and $|G|=n$.
${ }^{a}$ This is the complete characterization theorem for cyclic group

Detailed Study of Cyclic Group

Theorem

Let (G, \cdot) be a cyclic group ${ }^{a}$. Then
(i) $(G, \cdot) \cong(\mathbb{Z},+)$ iff G is infinite
(ii) $(G, \cdot) \cong\left(\mathbb{Z}_{n},+\right)$ iff G is finite and $|G|=n$.
${ }^{\text {a }}$ This is the complete characterization theorem for cyclic group

Proof.

Let G be a cylic group generated by a. Then $G=\left\{a^{n}: n \in \mathbb{Z}\right\}$. Then two cases can arise
ase-1: $a^{n} \neq a^{m}$ for $n \neq m$
Consider the function $f:(\mathbb{Z},+) \rightarrow(G, \cdot)$ given by $m \mapsto a^{m}$
ase-2: $\exists n, m \in \mathbb{Z} \ni a^{n}=a^{m}$
Consider the function $f:\left(\mathbb{Z}_{n},+\right) \rightarrow(G, \cdot)$ given by $\bar{m} \mapsto a^{\bar{m}}$

Cyclic Group

Exercise

(1) Let G be a group.
(a) If the order of $a \in G$ is t, then the order of a^{k} is $\frac{t}{g \operatorname{cd}(t, k)}$.
(D) If G is a cyclic group of order $n \& d \mid n$, then G has exactly $\phi(d)$ elements of order d. In particular, G has $\phi(n)$ generators.
(2) Let G_{1}, G_{2} be cyclic group of order m, n respectively and $\operatorname{gcd}(m, n)=1$. Then $G_{1} \times G_{2}$ is a cyclic group of order mn. If $\operatorname{gcd}(m, n) \neq 1, G_{1} \times G_{2}$ is never cyclic.

First Isomorphism Theorem

Theorem

Let $G_{1} \& G_{2}$ be two groups and $f: G_{1} \rightarrow G_{2}$ be a homomorphism.
Let $K=\left\{x \in G_{1}: f(x)=e_{2}\right\}$ denote the kernel of f
Then,
(1) $K \mathbb{E} G_{1}$
(1) The quotient group G_{1} / K is isomorphic to image of $f=f\left(G_{1}\right)\left(\subset G_{2}\right)$ under the following map

$$
\tilde{f}: G_{1} / K \rightarrow G_{2} \text { defined by } \tilde{f}(x K)=f(x)
$$

First Isomorphism Theorem

Proof

Hint:

- First prove $K \leq G_{1}$

First Isomorphism Theorem

Proof

Hint:

- First prove $K \leq G_{1}$
- Prove $K \mathbb{E} G_{1}$

First Isomorphism Theorem

Proof

Hint:

- First prove $K \leq G_{1}$
- Prove $K \mathbb{E} G_{1}$
- Prove \tilde{f} is well defined, 1-1 and onto

First Isomorphism Theorem

Proof

Hint:

- First prove $K \leq G_{1}$
- Prove $K \mathbb{E} G_{1}$
- Prove \tilde{f} is well defined, 1-1 and onto
- Prove \tilde{f} is homomorphism

Second Isomorphism Theorem

Theorem

Let (G, \cdot) be a group and $H \& K \leq G$ of which $K \mathbb{E} G$.
Then,
(1) $H . K \leq G$
(1) $H \cap K \mathbb{E} H$.
(ili) $H . K / K \cong H / H \cap K$

Second Isomorphism Theorem

Proof

Hint:

- First prove $H . K \leq G$

Second Isomorphism Theorem

Proof

Hint:

- First prove $H . K \leq G$
- Then prove $H \cap K \mathbb{E} H$.

Second Isomorphism Theorem

Proof

Hint:

- First prove $H . K \leq G$
- Then prove $H \cap K \mathbb{E} H$.
- Notice that $K \mathbb{E} H K$

Second Isomorphism Theorem

Proof

Hint:

- First prove $H . K \leq G$
- Then prove $H \cap K \mathbb{E} H$.
- Notice that $K \mathbb{E} H K$
- Prove that $f: H \rightarrow H K / K$ defined as

$$
h \mapsto h K,
$$

is isomorphic

Third Isomorphism Theorem

Theorem

Let (G, \cdot) be a group and $H \& K \mathbb{E} G s / t K \subset H$.
Then the quotients groups $G / K, G / H$, and H / K are defined and H / K is a normal subgroup of G / K and further

$$
G / H \cong(G / K) /(H / K)
$$

Exercises

(1) Prove that

$$
\mathbb{R}^{*} /\{-1,1\} \approx R^{+}
$$

Exercises

(1) Prove that

$$
\mathbb{R}^{*} /\{-1,1\} \approx R^{+}
$$

(2) Let $G=G L_{n}(\mathbb{R})$ be the group of $n \times n$ non-singular matrices over \mathbb{R}. Consider its subgroup $H=S L_{n}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}) \ni \operatorname{det}(A)=1\right\}$. Prove that

$$
G / H \approx \mathbb{R}^{*}
$$

Exercises

(1) Prove that

$$
\mathbb{R}^{*} /\{-1,1\} \approx R^{+}
$$

(2) Let $G=G L_{n}(\mathbb{R})$ be the group of $n \times n$ non-singular matrices over \mathbb{R}. Consider its subgroup $H=S L_{n}(\mathbb{R})=\left\{A \in G L_{n}(\mathbb{R}) \ni \operatorname{det}(A)=1\right\}$. Prove that

$$
G / H \approx \mathbb{R}^{*}
$$

(3) Let $G=\mathbb{Z}, H=6 \mathbb{Z}, K=8 \mathbb{Z}$. Using Second Isomorphism Theorem, prove that

$$
2 \mathbb{Z} / 6 \mathbb{Z} \approx 8 \mathbb{Z} / 24 \mathbb{Z}
$$

Outline

(1) Group Theory

- Subgroups
- Cyclic Groups
- Normal Subgroups
- Homomorphism

(2) Rings and Fields

- Ideals and Quotient Rings
- Euclidean Rings
- Polynomial Rings
(3) Vector Spaces
(4) Extension Fields
- Finite Fields

클

Rings

Definition

A ring $(R,+, \cdot)$ is a set R with 2 binary operations addition + and multiplication defined on R s/t the following conditions are satisfied:
(1) $(R,+)$ is an abelian group
(1) multiplication is associative
(II) For all $a, b, c \in R$ the left distributive law

$$
a .(b+c)=(a \cdot b)+(a \cdot c)
$$

and right distributive law

$$
(a+b) \cdot c=(a . c)+(b . c) \text { hold }
$$

Rings

Definition

(1) If a ring R contains the identity element 1 w.r.t. to multiplication, i.e., $1 . a=a .1=a \forall a \in R$, then we shall describe R as a ring with unit element or ring with identity.
(2) If the multiplication - is commutative on R, i.e., $a . b=b . a \forall a, b \in R$, then we call R is a commutative ring.
(3) If R satisfied both the above conditions, the we say R is a commutative ring with identity.

Rings

Example

(1) $R=(\mathbb{Z},+, \cdot)$ - the set of integers under the usual rules of addition and multiplication forms a ring. R is commutative ring with identity ${ }^{2}$.

Rings

Example

(1) $R=(\mathbb{Z},+, \cdot)$ - the set of integers under the usual rules of addition and multiplication forms a ring. R is commutative ring with identity ${ }^{2}$.
(2) R is the set of even integers under the usual rules of addition and multiplication forms a ring. R is commutative ring but has no identity element.

Rings

Example

(1) $R=(\mathbb{Z},+, \cdot)$ - the set of integers under the usual rules of addition and multiplication forms a ring. R is commutative ring with identity ${ }^{2}$.
(2) R is the set of even integers under the usual rules of addition and multiplication forms a ring. R is commutative ring but has no identity element.
(3) For $n \geq 1$, the set \mathbb{Z}_{n} under modular addition and modular multiplication forms a ring.
(a) For $n=6$, the set \mathbb{Z}_{6} under modular addition and modular multiplication forms a ring.
(b) For $n=7$, the set \mathbb{Z}_{7} under modular addition and modular multiplication forms a ring.

[^2]
Rings

Example

4 The set \mathbb{Q} of rational numbers under the usual rules of addition and multiplication forms a ring.

5 The set \mathbb{R} of real numbers under the usual rules of addition and multiplication forms a ring.

6 The set \mathbb{C} of complex numbers under the usual rules of addition and multiplication forms a ring.

Rings

Example

4 The set \mathbb{Q} of rational numbers under the usual rules of addition and multiplication forms a ring.

5 The set \mathbb{R} of real numbers under the usual rules of addition and multiplication forms a ring.

6 The set \mathbb{C} of complex numbers under the usual rules of addition and multiplication forms a ring.

7 Let $M_{n}(R)$ be the collection of all $n \times n$ matrices having elements of R. Then $M_{n}(R)$ forms a non-commutative ring with matrix addition and matrix multiplication
(a) $M_{n}(\mathbb{Z}), M_{n}(\mathbb{Q}), M_{n}(\mathbb{R})$, \& $M_{n}(\mathbb{C})$ form rings under matrix addition and matrix multiplication

Rings

Example (Ring of Quaternions)

Let Q be the set of all symbols of the form $\alpha_{0}+\alpha_{1} \cdot i+\alpha_{2} \cdot j+\alpha_{3} \cdot k$, where all $\alpha_{i} \in \mathbb{R}$ and

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

Let $\alpha, \beta \in Q$ and $\alpha=\alpha_{0}+\alpha_{1} . i+\alpha_{2} . j+\alpha_{3} . k$ and $\beta=\beta_{0}+\beta_{1} . i+\beta_{2} . j+\beta_{3} . k$.

Rings

Example (Ring of Quaternions)

Let Q be the set of all symbols of the form $\alpha_{0}+\alpha_{1} \cdot i+\alpha_{2} \cdot j+\alpha_{3} . k$, where all $\alpha_{i} \in \mathbb{R}$ and

$$
i^{2}=j^{2}=k^{2}=-1, \quad i j=-j i=k, \quad j k=-k j=i, \quad k i=-i k=j
$$

Let $\alpha, \beta \in Q$ and $\alpha=\alpha_{0}+\alpha_{1} \cdot i+\alpha_{2} . j+\alpha_{3} . k$ and $\beta=\beta_{0}+\beta_{1} \cdot i+\beta_{2} \cdot j+\beta_{3} . k$.
We define

$$
\begin{aligned}
& \alpha=\beta \Longleftrightarrow \alpha_{i}=\beta_{i} \text { for } i=0,1,2,3 . \\
& \alpha+\beta=\left(\alpha_{0}+\beta_{0}\right)+\left(\alpha_{1}+\beta_{1}\right) \cdot i+\left(\alpha_{2}+\beta_{2}\right) \cdot j+\left(\alpha_{3}+\beta_{3}\right) \cdot k \\
& \alpha \cdot \beta=\left(\alpha_{0} \beta_{0}-\alpha_{1} \beta_{1}-\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)+\left(\alpha_{0} \beta_{1}+\alpha_{1} \beta_{0}+\alpha_{2} \beta_{3}-\alpha_{3} \beta_{2}\right) i+ \\
& \quad\left(\alpha_{0} \beta_{2}-\alpha_{1} \beta_{3}+\alpha_{2} \beta_{0}+\alpha_{3} \beta_{1}\right) j+\left(\alpha_{0} \beta_{3}+\alpha_{1} \beta_{2}-\alpha_{2} \beta_{1}+\alpha_{3} \beta_{0}\right) k
\end{aligned}
$$

Q forms a non-commutative ring under the operations defined above.

Rings

Definition

(1) If R is a commutative ring and $a(\neq 0) \in R$, then a is said to be a zero-divisor, if $\exists b \in R$ and $b \neq 0 s / t a . b=0$.

Rings

Definition

(1) If R is a commutative ring and $a(\neq 0) \in R$, then a is said to be a zero-divisor, if $\exists b \in R$ and $b \neq 0 s / t a . b=0$.

Rings

Definition

(1) If R is a commutative ring and $a(\neq 0) \in R$, then a is said to be a zero-divisor, if $\exists b \in R$ and $b \neq 0$ s/t $a . b=0$.

For example in \mathbb{Z}_{6},

Rings

Definition

(1) If R is a commutative ring and $a(\neq 0) \in R$, then a is said to be a zero-divisor, if $\exists b \in R$ and $b \neq 0$ s/t $a . b=0$.

For example in $\mathbb{Z}_{6}, 2,3,4$ are zero-divisors.
(2) A commutative ring is an integral domain if it has no zero-divisors.

Rings

Definition

(1) If R is a commutative ring and $a(\neq 0) \in R$, then a is said to be a zero-divisor, if $\exists b \in R$ and $b \neq 0 s / t a . b=0$.

For example in $\mathbb{Z}_{6}, 2,3,4$ are zero-divisors.
(2) A commutative ring is an integral domain if it has no zero-divisors. For example, $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \& \mathbb{Z}_{7}$ are integral domains.
(3) A ring is said to be a division ring (or skew field) if its non-zero elements form a group under multiplication.

Rings

Definition

(1) If R is a commutative ring and $a(\neq 0) \in R$, then a is said to be a zero-divisor, if $\exists b \in R$ and $b \neq 0 s / t a . b=0$.

For example in $\mathbb{Z}_{6}, 2,3,4$ are zero-divisors.
(2) A commutative ring is an integral domain if it has no zero-divisors. For example, $\mathbb{Z}, \mathbb{Q}, \mathbb{R} \& \mathbb{Z}_{7}$ are integral domains.
(3) A ring is said to be a division ring (or skew field) if its non-zero elements form a group under multiplication.
For example, $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ and ring of quaternions Q are division rings

Rings \& Fields

Definition

The characteristic of an integral domain R is defined as the smallest positive integer $m \mathrm{~s} / \mathrm{t} m . a=0$ for all $a \in R$.

The characteristic of an integral domain R is defined 0 , if we don't have such m.

Rings \& Fields

Definition

The characteristic of an integral domain R is defined as the smallest positive integer $m \mathrm{~s} / \mathrm{t} m . a=0$ for all $a \in R$.

The characteristic of an integral domain R is defined 0 , if we don't have such m.

Definition

A field is a commutative division ring.
A field $(\mathbb{F},+, \cdot)$ satisfies the following conditions:
(i) $(\mathbb{F},+)$ is an abelian group
(it) $(\mathbb{F} \backslash\{0\}, \cdot)$ is also an abelian group
(iii) For all $a, b, c \in \mathbb{F}$ the distributive law

$$
a .(b+c)=(a . b)+(a . c) \text { hold }
$$

Rings

Lemma

If R is a ring, then for all $a, b \in R$
(1) $a .0=0 . a=0$
(1) $a(-b)=(-a) b=-(a b)$
(II) $(-a)(-b)=a b$

If, in addition, R has an identity element 1, then
(V) $(-1) a=-a$
(D) $(-1)(-1)=1$

Rings \& Fields

Lemma

A finite integral domain is a field.

Rings \& Fields

Lemma

A finite integral domain is a field.

Rings \& Fields

Corollary
 If p is a prime number, then \mathbb{Z}_{p} is a field.

Rings \& Fields

Corollary

If p is a prime number, then \mathbb{Z}_{p} is a field.

Note: \mathbb{Z}_{n} never forms a field if n is composite

Exercise

If D is an integral domain and D is of finite characteristic, prove that the characteristic of D is a prime number.

Rings

Example

Let R be a ring and x be an indeterminate. The polynomial ring $R[x]$ is defined to be the set of all formal sums $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=\sum_{i=0}^{n} a_{i} x^{i}$, where $a_{i} \in R$ are called the coefficients of x^{i} for $0 \leq i \leq n$.

Rings

Example

Let R be a ring and x be an indeterminate. The polynomial ring $R[x]$ is defined to be the set of all formal sums $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=\sum_{i=0}^{n} a_{i} x^{i}$, where $a_{i} \in R$ are called the coefficients of x^{i} for $0 \leq i \leq n$.

Given two polynomials $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \& g(x)=\sum_{i=0}^{m} b_{i} x^{i} \in R[x]$

$$
f(x)+g(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}
$$

where we have implicitly assumed that $m \leq n$ and we set $b_{i}=0$, for $i>m$ and

$$
f(x) \cdot g(x)=\sum_{i=0}^{m+n}\left(\sum_{j=0}^{i} a_{i-j} b_{j} x^{i}\right)
$$

$R[x]$ becomes a ring, with 0 given as the polynomial with zero coefficients.

Rings

Example

Let R be a ring and x be an indeterminate. The polynomial ring $R[x]$ is defined to be the set of all formal sums $a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=\sum_{i=0}^{n} a_{i} x^{i}$, where $a_{i} \in R$ are called the coefficients of x^{i} for $0 \leq i \leq n$.

Given two polynomials $f(x)=\sum_{i=0}^{n} a_{i} x^{i} \& g(x)=\sum_{i=0}^{m} b_{i} x^{i} \in R[x]$

$$
f(x)+g(x)=\sum_{i=0}^{n}\left(a_{i}+b_{i}\right) x^{i}
$$

where we have implicitly assumed that $m \leq n$ and we set $b_{i}=0$, for $i>m$ and

$$
f(x) \cdot g(x)=\sum_{i=0}^{m+n}\left(\sum_{j=0}^{i} a_{i-j} b_{j} x^{i}\right)
$$

$R[x]$ becomes a ring, with 0 given as the polynomial with zero coefficients. If R has identity, $1 \neq 0$ then $R[x]$ has identity, $1 \neq 0,1$ is the polynomial whose constant coefficient is 1 and other terms are 0 .

Rings

Example

Solve $x^{2}-5 x+6=0$ in Z_{12}.

Rings

Example

Solve $x^{2}-5 x+6=0$ in Z_{12}.

Exercise

1. Find all the solution of the equation $x^{2}+2 x+4=0$ in \mathbb{Z}_{6}
2. Solve the equation $3 x=2$ in \mathbb{Z}_{23}

Modular Equation $a x \equiv b \bmod m$

Modular Equation $a x \equiv b \bmod m$

Theorem
Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}_{m} \mathrm{~s} / \operatorname{tgcd}(a, m)=1$. For each $b \in \mathbb{Z}_{m}$, the equation $a x=b$ has unique solution in \mathbb{Z}_{m}.

Modular Equation $a x \equiv b \bmod m$

Theorem

Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}_{m} \mathrm{~s} / \operatorname{tgcd}(a, m)=1$. For each $b \in \mathbb{Z}_{m}$, the equation $a x=b$ has unique solution in \mathbb{Z}_{m}.

Theorem

Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} iff $d \mid b$. When $d \mid b$, the equation has exactly d solutions in \mathbb{Z}_{m}.

Modular Equation $a x \equiv b \bmod m$

Theorem

Let $m \in \mathbb{N}$ and $a \in \mathbb{Z}_{m} \mathrm{~s} / \operatorname{tgcd}(a, m)=1$. For each $b \in \mathbb{Z}_{m}$, the equation $a x=b$ has unique solution in \mathbb{Z}_{m}.

Theorem

Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} iff $d \mid b$. When $d \mid b$, the equation has exactly d solutions in \mathbb{Z}_{m}.

Proof.

- Let $s \in \mathbb{Z}_{m}$ be a solution of the equation $a x=b$ in \mathbb{Z}_{m}
- $a s-b=q m$
$b=a s-q m$, and
$d \mid(a s-q m)$
- Thus, a solution s can exist only if $d \mid b$

Modular Equation $a x \equiv b \bmod m$

Theorem

Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} iff $d \mid b$. When $d \mid b$, the equation has exactly d solutions in \mathbb{Z}_{m}.

Modular Equation $a x \equiv b \bmod m$

Theorem

Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} iff $d \mid b$. When $d \mid b$, the equation has exactly d solutions in \mathbb{Z}_{m}.

Proof.

- Suppose $d \mid b, \Rightarrow b=b_{1} d$
- $\because \operatorname{gcd}(a, m)=d, \quad \therefore a=a_{1} d \& m=m_{1} d$

Modular Equation $a x \equiv b \bmod m$

Theorem

Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} iff $d \mid b$. When $d \mid b$, the equation has exactly d solutions in \mathbb{Z}_{m}.

Proof.

- Suppose $d \mid b, \Rightarrow b=b_{1} d$
- $\because \operatorname{gcd}(a, m)=d, \quad \therefore a=a_{1} d \& m=m_{1} d$
- Then the equation $a x=b$ in \mathbb{Z}_{m} can be written as $a x-b=q m$ in \mathbb{Z}
- $a x-b=q m \Rightarrow d\left(a_{1} x-b_{1}\right)=d q m_{1}$
- Now, $m\left|(a x-b) \Longleftrightarrow m_{1}\right|\left(a_{1} x-b_{1}\right)$
- Thus the solution s of $a x=b$ in \mathbb{Z}_{m} are precisely the solution of $a_{1} x=b_{1}$ in $\mathbb{Z}_{m_{1}}$
- Now, $s \in \mathbb{Z}_{m_{1}}$ is the! solution of $a_{1} x=b_{1}$ in $\mathbb{Z}_{m_{1}}$
- The numbers $\in \mathbb{Z}_{m}$ that reduces to $s \bmod m_{1}$

$$
s, s+m_{1}, s+2 m_{1}, \ldots, s+(d-1) m_{1}
$$

Modular Equation $a x \equiv b \bmod m$

Theorem

Let $m \in \mathbb{N}$ and $a, b \in \mathbb{Z}_{m}$. Let $d=\operatorname{gcd}(a, m)$. The equation $a x=b$ has a solution in \mathbb{Z}_{m} iff $d \mid b$. When $d \mid b$, the equation has exactly d solutions in \mathbb{Z}_{m}.

Proof.

- Suppose $d \mid b, \Rightarrow b=b_{1} d$
- $\because \operatorname{gcd}(a, m)=d, \quad \therefore a=a_{1} d \& m=m_{1} d$
- Then the equation $a x=b$ in \mathbb{Z}_{m} can be written as $a x-b=q m$ in \mathbb{Z}
- $a x-b=q m \Rightarrow d\left(a_{1} x-b_{1}\right)=d q m_{1}$
- Now, $m\left|(a x-b) \Longleftrightarrow m_{1}\right|\left(a_{1} x-b_{1}\right)$
- Thus the solution s of $a x=b$ in \mathbb{Z}_{m} are precisely the solution of $a_{1} x=b_{1}$ in $\mathbb{Z}_{m_{1}}$
- Now, $s \in \mathbb{Z}_{m_{1}}$ is the! solution of $a_{1} x=b_{1}$ in $\mathbb{Z}_{m_{1}}$
- The numbers $\in \mathbb{Z}_{m}$ that reduces to $s \bmod m_{1}$

$$
s, s+m_{1}, s+2 m_{1}, \ldots, s+(d-1) m_{1}
$$

Thus, there are exactly d solutions of the equation in \mathbb{Z}_{m}.

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher :

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& p_{i} \mapsto\left(a . p_{i}+b\right) \bmod 26 .
\end{aligned}
$$

Example

- Encrypt COLLEGE using $a=5$ and $b=4$
- Convert C O L L E G E in numeric form

$$
2141111464
$$

- Apply the affine function 14227724824
- Cipher text is OWHHYIY

Rings

Theorem

In the ring \mathbb{Z}_{n}, the zero-divisors are precisely those non-zero elements that are not relatively prime to n.

Rings

Theorem

In the ring \mathbb{Z}_{n}, the zero-divisors are precisely those non-zero elements that are not relatively prime to n.

Corollary

If p is prime, then \mathbb{Z}_{p} has no zero-divisor.

Theorem

The cancellation laws holds in a ring R iff R has no zero-divisor.

Homomorphism

Definition

A mapping ϕ from the ring R into the ring R^{\prime} is said to be a homomorphism if
(1) $\phi(a+b)=\phi(a)+\phi(b)$
(II) $\phi(a . b)=\phi(a) \cdot \phi(b)$

Definition

A mapping ϕ from the ring R into the ring R^{\prime} is said to be a isomorphism if ϕ is a homomorphism as well as one-to-one and onto.

Homomorphism

Lemma

If ϕ is a homomorphism of R into R^{\prime}, then
(1) $\phi(0)=0$
(I) $\phi(-a)=-\phi(a) \forall a \in R$

Homomorphism

Lemma

If ϕ is a homomorphism of R into R^{\prime}, then
(1) $\phi(0)=0$
(II) $\phi(-a)=-\phi(a) \forall a \in R$

Definition

If ϕ is a homomorphism of R into R^{\prime} then the kernel of phi, $I(\phi)$, is the set of all elements $a \in R \mathrm{~s} / \mathrm{t} \phi(a)=0$, the zero-element of R^{\prime}.

Homomorphism

Lemma

If ϕ is a homomorphism of R into R^{\prime} with kernel $I(\phi)$, then
(1) $I(\phi)$ is a subgroup of R under addition.
(1) If $a \in I(\phi)$ and $r \in R$ then both a.r, r. $a \in I(\phi)$.

Homomorphism

Lemma

If ϕ is a homomorphism of R into R^{\prime} with kernel $I(\phi)$, then
(i) $I(\phi)$ is a subgroup of R under addition.
(ii) If $a \in I(\phi)$ and $r \in R$ then both a.r, r.a $\in I(\phi)$.

Example

Let $J(\sqrt{2})$ be all real numbers of the form $m+n \sqrt{2}$ where $m, n \in \mathbb{Z} ; J(\sqrt{2})$ forms a ring under the usual addition andmultiplication of real numbers. (Verify!)

Define $\phi: J(\sqrt{2}) \rightarrow J(\sqrt{2})$ by

$$
\phi(m+n \sqrt{2})=m-n \sqrt{2} .
$$

Homomorphism

Lemma

If ϕ is a homomorphism of R into R^{\prime} with kernel $I(\phi)$, then
(i) $I(\phi)$ is a subgroup of R under addition.
(ii) If $a \in I(\phi)$ and $r \in R$ then both a.r, r.a $\in I(\phi)$.

Example

Let $J(\sqrt{2})$ be all real numbers of the form $m+n \sqrt{2}$ where $m, n \in \mathbb{Z} ; J(\sqrt{2})$ forms a ring under the usual addition andmultiplication of real numbers. (Verify!)

Define $\phi: J(\sqrt{2}) \rightarrow J(\sqrt{2})$ by

$$
\phi(m+n \sqrt{2})=m-n \sqrt{2} .
$$

ϕ is a homomorphism of $J(\sqrt{2})$ onto $J(\sqrt{2})$ and its kernel $I(\phi)$, consists only of 0 . (Verify!)

Ideals and Quotient Rings

Definition

A non-empty subset I of R is said to be a (two-sided) ideal of R if
(1) I is a subgroup of R under addition.
(1) For every $u \in I$ and $r \in R$, both $u r, \& r u \in I$.

Ideals and Quotient Rings

Lemma

If I is an ideal of the ring R, then R / I is a ring and is a homomorphic image of R.

Ideals and Quotient Rings

Lemma

If I is an ideal of the ring R, then R / I is a ring and is a homomorphic image of R.

Proof.

Hint:

- R / I is the set of all the distinct cosets of I in R

Ideals and Quotient Rings

Lemma

If I is an ideal of the ring R, then R / I is a ring and is a homomorphic image of R.

Proof.

Hint:

- R / I is the set of all the distinct cosets of I in R
- R / I consists of all the cosets $a+I$, where $a \in R$.
- R / I is automatically a group under addition $(a+I)+(b+I)=(a+b)+I$.
- Define the multiplication in R / I as $(a+I)(b+I)=a b+I$
- Define homomorphism $\phi: R \rightarrow R / I$ by $\phi(a)=a+I$ for every $a \in R$.
- Prove that kernel of ϕ is exactly

Ideals and Quotient Rings

Lemma

If I is an ideal of the ring R, then R / I is a ring and is a homomorphic image of R.

Proof.

Hint:

- R / I is the set of all the distinct cosets of I in R
- R / I consists of all the cosets $a+I$, where $a \in R$.
- R / I is automatically a group under addition $(a+I)+(b+I)=(a+b)+I$.
- Define the multiplication in R / I as $(a+I)(b+I)=a b+I$
- Define homomorphism $\phi: R \rightarrow R / I$ by $\phi(a)=a+I$ for every $a \in R$.
- Prove that kernel of ϕ is exactly I.

Ideals and Quotient Rings

Lemma

If I is an ideal of the ring R, then R / I is a ring and is a homomorphic image of R.

Proof.

Hint:

- R / I is the set of all the distinct cosets of I in R
- R / I consists of all the cosets $a+I$, where $a \in R$.
- R / I is automatically a group under addition $(a+I)+(b+I)=(a+b)+I$.
- Define the multiplication in R / I as $(a+I)(b+I)=a b+I$
- Define homomorphism $\phi: R \rightarrow R / I$ by $\phi(a)=a+I$ for every $a \in R$.
- Prove that kernel of ϕ is exactly I.

If R is commutative then so is R / I. If R has the identity element 1 , then R / I has thee [家 identity $1+I$

Ideals and Quotient Rings

Theorem

Let R, R^{\prime} be rings and ϕ be a homomorphism of R onto R^{\prime} with kernel I. Then R^{\prime} is isomorphic to R / I.

Ideals and Quotient Rings

Theorem

Let R, R^{\prime} be rings and ϕ be a homomorphism of R onto R^{\prime} with kernel I. Then R^{\prime} is isomorphic to R / I.

Moreover, there is a one-to-one correspondence between the set of ideals of R^{\prime} and the set of ideals of R which contain I.

Ideals and Quotient Rings

Theorem

Let R, R^{\prime} be rings and ϕ be a homomorphism of R onto R^{\prime} with kernel I. Then R^{\prime} is isomorphic to R / I.

Moreover, there is a one-to-one correspondence between the set of ideals of R^{\prime} and the set of ideals of R which contain I.

This correspondence can be achieved by associating with an ideal I^{\prime} in R^{\prime} the ideal I in R defined by $I=\left\{x \in R \mid \phi(x) \in I^{\prime}\right\}$.

$$
R / I \approx R^{\prime} / I .^{\prime}
$$

Ideals and Quotient Rings

Lemma

Let R be a commutative ring with identity whose only ideals are (0) and R itself. Then R is a field.

Ideals and Quotient Rings

Lemma

Let R be a commutative ring with identity whose only ideals are (0) and R itself. Then R is a field.

Proof.

- Suppose that $a \neq 0$ is in R. Consider the set $R a=\{x a \mid x \in R\}$.
- Claim: $R a$ is an ideal of R.

Ideals and Quotient Rings

Lemma

Let R be a commutative ring with identity whose only ideals are (0) and R itself. Then R is a field.

Proof.

- Suppose that $a \neq 0$ is in R. Consider the set $R a=\{x a \mid x \in R\}$.
- Claim: $R a$ is an ideal of R.
- $R a$ is an additive subgroup of R.
- If $r \in R, u \in R a, r u=r\left(r_{1} a\right)=\left(r r_{1}\right) a \in R a . R a$ is an ideal of R.
- $R a=(0)$ or $R a=R . \because 0 \neq a=1 a \in R a, R a \neq(0)$; thus, we have $R a=R$.
$\bullet \because 1 \in R \mathrm{so}$, it can be realized as a multiple of $a ; \exists b \in R \mathrm{~s} / \mathrm{t} b a=1$.

Ideals and Quotient Rings

Definition

An ideal $M \neq R$ in a ring R is said to be a maximal ideal of R if whenever U is an ideal of $R s / t M \subset U \subset R$, then either $R=U$ or $M=U$.

Ideals and Quotient Rings

Definition

An ideal $M \neq R$ in a ring R is said to be a maximal ideal of R if whenever U is an ideal of $R s / t M \subset U \subset R$, then either $R=U$ or $M=U$.

Exercise

Let $R=\mathbb{Z}$ be the ring of integers, and let U be an ideal of R.
$\left[\because U \leq R\right.$ we know that $U=n_{0} \mathbb{Z}$; we write this as $U=\left(n_{0}\right)$.]
What values of n_{0} lead to maximal ideals?

Ideals and Quotient Rings

Solution

- First, we assume p is prime $\Rightarrow P=(p)$ is a maximal ideal of R.
- If U is an ideal of R and $P \subset U$, then $U=\left(n_{0}\right)$ for some integer n_{0}
- $\because p \in P \subset U, p=m n_{0}$ for some $m \in \mathbb{Z}$
$\because p$ is a prime $\Rightarrow n_{0}=1$ or $n_{0}=p$
- If $n_{0}=p$, then $P \subset U=\left(n_{0}\right) \subset P, \Rightarrow U=P$
- If $n_{0}=1$, then $1 \in U$, hence $r=1 r \in U \forall r \in R$ whence $U=R$

Ideals and Quotient Rings

Solution

- Now, we assume $M=\left(n_{0}\right)$ is a maximal ideal of $R \Rightarrow n_{0}$ must be prime.
- Claim: n_{0} must be a prime

Ideals and Quotient Rings

Solution

- Now, we assume $M=\left(n_{0}\right)$ is a maximal ideal of $R \Rightarrow n_{0}$ must be prime.
- Claim: n_{0} must be a prime
- If $n_{0}=a b$, where $a, b \in \mathbb{N}$, then $U=(a) \supset M$, hence $U=R$ or $U=M$.
- If $U=R$, then $a=1 \Rightarrow n_{0}$ is prime

Ideals and Quotient Rings

Solution

- Now, we assume $M=\left(n_{0}\right)$ is a maximal ideal of $R \Rightarrow n_{0}$ must be prime.
- Claim: n_{0} must be a prime
- If $n_{0}=a b$, where $a, b \in \mathbb{N}$, then $U=(a) \supset M$, hence $U=R$ or $U=M$.
- If $U=R$, then $a=1 \Rightarrow n_{0}$ is prime
- If $U=M$, then $a \in M$ and so $a=r n_{0}$ for some integer r, \because every element of M is a multiple of n_{0}
- But then $n_{0}=a b=r n_{0} b, \Rightarrow r b=1$, so that $b=1, n_{0}=a$. Thus, n_{0} is a prime number.

Ideals and Quotient Rings

Example (Maximal Ideal)

Let R be the ring of all the real-valued, continuous functions on the closed unit interval [0, 1].

Let

$$
M=\{f(x) \in R \mid f(1 / 2)=0\} .
$$

M is certainly an ideal of R. Moreover, it is a maximal ideal of R.

Ideals and Quotient Rings

Theorem

If R is a commutative ring with identity and M is an ideal of R, then M is a maximal ideal of $R \Longleftrightarrow R / M$ is a field.

Ideals and Quotient Rings

Theorem

If R is a commutative ring with identity and M is an ideal of R, then M is a maximal ideal of $R \Longleftrightarrow R / M$ is a field.

Proof.

- Suppose, first, R / M is a field.
- $\because R / M$ is a field its only ideals are (0) and R / M itself.

Ideals and Quotient Rings

Theorem

If R is a commutative ring with identity and M is an ideal of R, then M is a maximal ideal of $R \Longleftrightarrow R / M$ is a field.

Proof.

- Suppose, first, R / M is a field.
- $\because R / M$ is a field its only ideals are (0) and R / M itself.
- There is a one-to-one correspondence between the set of ideals of R / M and the set of ideals of R which contain M.
- The ideal M of R corresponds to the ideal (0) of R / M whereas the ideal R of R corresponds to the ideal R / M of R / M in this one-to-one mapping.
- Thus there is no ideal between M and R other than these two, whence M is a maximal ideal.

Ideals and Quotient Rings

Proof.

- Now, assume that M is a maximal ideal of R
- $\because M$ is a maximal ideal of $R, R / M$ has only (0) and itself as ideals.
- Furthermore R / M is commutative with identity element since R enjoys both these properties.
- By the lemma ??, we can say that R / M is a field.

Ideals and Quotient Rings

The Field of Quotients of an ID

Definition

A ring R can be imbedded in a ring R^{\prime} if there is an isomorphism ${ }^{a}$ of R into R^{\prime}.
R^{\prime} will be called an over-ring or extension of R if R can be imbedded in R^{\prime}.
alf $R \& R^{\prime}$ have identity element, then this isomorphism takes 1 onto 1^{\prime}.

The Field of Quotients of an ID

Definition

A ring R can be imbedded in a ring R^{\prime} if there is an isomorphism ${ }^{a}$ of R into R^{\prime}.
R^{\prime} will be called an over-ring or extension of R if R can be imbedded in R^{\prime}.
${ }^{\text {a }}$ If $R \& R^{\prime}$ have identity element, then this isomorphism takes 1 onto 1 '.

- Let D be our integral domain. Let a / b denotes all quotients where $a, b \in D$ and $b \neq 0$
- Define:
- $\frac{a}{b}=\frac{c}{d} \Longleftrightarrow a d=b c$
- $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$
- $\left(\frac{a}{b}\right)\left(\frac{c}{d}\right)=\frac{a c}{b d}$

The Field of Quotients of an ID

- $\mathcal{M}=\{(a, b) \mid a, b \in D \& b \neq 0\}$
- Define a relation on \mathcal{M} as follows:

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c .
$$

The Field of Quotients of an ID

- $\mathcal{M}=\{(a, b) \mid a, b \in D \& b \neq 0\}$
- Define a relation on \mathcal{M} as follows:

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c .
$$

- Prove that ~ is an equivalence relation on \mathcal{M}
- Let $[a, b]$ be the equivalence class in \mathcal{M} of (a, b).
- Let F be the set of all such equivalence classes $[a, b]$ where $a, b \in D$ and $b \neq 0$.

The Field of Quotients of an ID

- $\mathcal{M}=\{(a, b) \mid a, b \in D \& b \neq 0\}$
- Define a relation on \mathcal{M} as follows:

$$
(a, b) \sim(c, d) \Longleftrightarrow a d=b c .
$$

- Prove that ~ is an equivalence relation on \mathcal{M}
- Let $[a, b]$ be the equivalence class in \mathcal{M} of (a, b).
- Let F be the set of all such equivalence classes $[a, b]$ where $a, b \in D$ and $b \neq 0$.
- Prove that F is a field where

$$
[a, b]^{-1}=[b, a], \because a \neq 0
$$

The Field of Quotients of an ID

Theorem

Every integral domain can be imbedded in a field.

Euclidean Rings

Definition

An integral domain R is said to be a Euclidean ring if for every $a \neq 0$ in R there is defined a non-negative integer $d(a) s / t$
(1) $\forall a, b \in R$, both non-zero, $d(a) \leq d(a b)$.
(II) For any $a, b \in R$, both non-zero, $\exists q, r \in R s / t a=q b+r$ where either $r=0$ or $d(r)<d(b)$.

Euclidean Rings

Definition

An integral domain R is said to be a Euclidean ring if for every $a \neq 0$ in R there is defined a non-negative integer $d(a) s / t$
(1) $\forall a, b \in R$, both non-zero, $d(a) \leq d(a b)$.
(II) For any $a, b \in R$, both non-zero, $\exists q, r \in R s / t a=q b+r$ where either $r=0$ or $d(r)<d(b)$.

Note:

- We do not assign a value to $d(0)$.
- $d(a)=|a|$ acts as the required function.

Euclidean Rings

Theorem

Let R be a Euclidean ring and let A be an ideal of R. Then $\exists a_{0} \in A$ s/t A consists exactly of all $a_{0} x$ as x ranges over R.

Euclidean Rings

Theorem

Let R be a Euclidean ring and let A be an ideal of R. Then $\exists a_{0} \in A$ s/t A consists exactly of all $a_{0} x$ as x ranges over R.

Proof.

- If A just consists of the element 0 , put $a_{0}=0$
- Thus, we assume that there is an $a \neq 0$ in A.
- Pick an $a_{0} \in A \mathrm{~s} / \mathrm{t} d\left(a_{o}\right)$ is minimal.

Euclidean Rings

Theorem

Let R be a Euclidean ring and let A be an ideal of R. Then $\exists a_{0} \in A \mathrm{~s} / t A$ consists exactly of all $a_{0} x$ as x ranges over R.

Proof.

- If A just consists of the element 0 , put $a_{0}=0$
- Thus, we assume that there is an $a \neq 0$ in A.
- Pick an $a_{0} \in A \mathrm{~s} / \mathrm{t} d\left(a_{o}\right)$ is minimal.
- $\because a \in A$, by the properties of Euclidean rings there exist $q, r \in R \mathrm{~s} / \mathrm{t} a=q a_{0}+r$ where $r=0$ or $d(r)<d\left(a_{0}\right)$.
- $\because a_{0} \in A$ and A is an ideal of $R, q a_{0} \in A$.
$\Rightarrow a-q a_{0} \in A$; but $r=a-q a_{0}$, whence $r \in A$.
- If $r \neq 0$ then $d(r)<d\left(a_{0}\right)$, giving us an element $r \in A$ whose d-value is smaller than that of a_{0}, in contradiction to our choice of $a_{0} \in A$ of minimal d-value.

Euclidean Rings

Definition

An integral domain R with identity is a principal ideal ring if every ideal A in R is of the form $A=$ (a) for some $a \in R$, where the notation $(a)=\{x a \mid x \in R\}$ to represent the ideal of all multiples of a.

Euclidean Rings

Definition

An integral domain R with identity is a principal ideal ring if every ideal A in R is of the form $A=(a)$ for some $a \in R$, where the notation $(a)=\{x a \mid x \in R\}$ to represent the ideal of all multiples of a.

Exercise

A Euclidean ring possesses the identity element.

Euclidean Rings

Definition

An integral domain R with identity is a principal ideal ring if every ideal A in R is of the form $A=$ (a) for some $a \in R$, where the notation $(a)=\{x a \mid x \in R\}$ to represent the ideal of all multiples of a.

Exercise

A Euclidean ring possesses the identity element.

Definition

If $a \neq 0$ and b are in a commutative ring R then a is said to divide b if \exists $a c \in R s / t b=a c$. We shall use the symbol $a \mid b$ to represent the fact that a divides b and $a \nmid b$ to mean that a does not divide b.

Euclidean Rings

Definition

If $a, b \in R$ then $d \in R$ is said to be a greatest common divisor of a and b if
(1) $d|a \& d| b$.
(1) Whenever $c \mid a$ and $c \mid b$ then $c \mid d$.

Euclidean Rings

Definition

If $a, b \in R$ then $d \in R$ is said to be a greatest common divisor of a and b if
(1) $d|a \& d| b$.
(1) Whenever $c \mid a$ and $c \mid b$ then $c \mid d$.

Lemma

Let R be a Euclidean ring. Then any two elements $a \& b \in R$ have a greatest common divisor d.

Euclidean Rings

Definition

If $a, b \in R$ then $d \in R$ is said to be a greatest common divisor of a and b if
(1) $d|a \& d| b$.
(1) Whenever $c \mid a$ and $c \mid b$ then $c \mid d$.

Lemma

Let R be a Euclidean ring. Then any two elements $a \& b \in R$ have a greatest common divisor d.

Moreover $d=\lambda a+\mu b$ for some $\lambda, \mu \in R$.

Euclidean Rings

Proof.

- Let $A=\{r a+s b: r, s \in R\}$
- Prove that A is an ideal of R.

Euclidean Rings

Proof.

- Let $A=\{r a+s b: r, s \in R\}$
- Prove that A is an ideal of R.
- Since A is an ideal of $R, \therefore A$ is principle ideal ring.
- $\exists d \in A \mathrm{~s} / \mathrm{t}$ every element in A is a multiple of d.
- $\because R$ is a Euclidean ring, R contains identity.
- Thus, $a=1 . a+0 . b \in A, b=0 . a+1 . b \in A$
- They are both multiples of d, whence $d|a \& d| b$.
- Finally, suppose that $c|a \& c| b$; then $c \mid \lambda a+\mu b=d$.

Euclidean Rings

Definition

Let R be a commutative ring with identity. An element $a \in R$ is a unit in R if \exists an element $b \in R s / t a b=1$.

Euclidean Rings

Definition

Let R be a commutative ring with identity. An element $a \in R$ is a unit in R if \exists an element $b \in R s / t a b=1$.

Do not confuse a unit with a unit element. A unit in a ring is an element whose inverse is also in the ring.

Euclidean Rings

Definition

Let R be a commutative ring with identity. An element $a \in R$ is a unit in R if \exists an element $b \in R s / t a b=1$.

Do not confuse a unit with a unit element. A unit in a ring is an element whose inverse is also in the ring.

Exercise

Let R be an integral domain with identity and suppose that for $a, b \in R$ both $a|b, \& b| a$. Then $a=u b$, where u is a unit in R.

Euclidean Rings

Definition

Let R be a commutative ring with identity. An element $a \in R$ is a unit in R if \exists an element $b \in R s / t a b=1$.

Do not confuse a unit with a unit element. A unit in a ring is an element whose inverse is also in the ring.

Exercise

Let R be an integral domain with identity and suppose that for $a, b \in R$ both $a|b, \& b| a$. Then $a=u b$, where u is a unit in R.

Definition

Let R be a commutative ring with identity. Two elements $a \& b \in R$ are said to be associates if $b=u a$ for some unit $u \in R$.

Euclidean Rings

Definition

In the Euclidean ring R a nonunit π is said to be a prime element of R if whenever $\pi=a b$, where $a, b \in R$, then one of a or b is a unit in R.

Euclidean Rings

Definition

In the Euclidean ring R a nonunit π is said to be a prime element of R if whenever $\pi=a b$, where $a, b \in R$, then one of a or b is a unit in R.

Lemma

Let R be a Euclidean ring. Then every element in R is either a unit in R or can be written as the product of a finite number of prime elements of R.

Definition

In the Euclidean ring $R, a \& b \in R$ are said to be relatively prime if $\operatorname{gcd}(a, b)$ is a unit of R.

Euclidean Rings

Lemma

Let R be a Euclidean ring. Suppose that for $a, b, c \in R, a \mid b c$ but $\operatorname{gcd}(a, b)=1$. Then $a \mid c$.

Lemma

If π is a prime element in the Euclidean ring R and $\pi \mid a b$ where $a, b \in R$ then π divides at least one of a or b.

Euclidean Rings

Lemma

Let R be a Euclidean ring. Suppose that for $a, b, c \in R, a \mid b c$ but $\operatorname{gcd}(a, b)=1$. Then $a \mid c$.

Lemma

If π is a prime element in the Euclidean ring R and $\pi \mid a b$ where $a, b \in R$ then π divides at least one of a or b.

Theorem (Unique Factorization Theorem)

Let R be a Euclidean ring and $a \neq 0$ a nonunit in R. Suppose that

$$
a=\pi_{1} \pi_{2} \ldots \pi_{n}=\pi_{1}^{\prime} \pi_{2}^{\prime} \ldots \pi_{m}^{\prime},
$$

where the $\pi_{i} \& \pi_{j}^{\prime}$ are prime elements of R. Then $n=m$ and each $\pi_{i}, 1 \leq i \leq n$ is an associate of some $\pi_{j}^{\prime}, 1 \leq j \leq m$ and conversely each π_{k}^{\prime} is an associate of some π_{q}.

Euclidean Rings

Every nonzero element in a Euclidean ring R can be uniquely written (up to associates) as a product of prime elements or is a unit in R.

Euclidean Rings

Every nonzero element in a Euclidean ring R can be uniquely written (up to associates) as a product of prime elements or is a unit in R.

Lemma

The ideal $A=\left(a_{0}\right)$ is a maximal ideal of the Euclidean ring R iff a_{0} is a prime element of R.

Polynomial Rings

- Let \mathbb{F} be a field. By the ring of polynomials in the indeterminate, x, denoted by $\mathbb{F}[x]$,

$$
\mathbb{F}[x]=\left\{a_{0}+a_{1} x+\ldots+a_{n} x^{n},: n \in \mathbb{N} \& a_{i} \in \mathbb{F}, \text { for } 0 \leq i \leq n\right\}
$$

Exercise

$\mathbb{F}[x]$ is an integral domain, when \mathbb{F} is a field (integral domain)

Theorem

$\mathbb{F}[x]$ is a Euclidean ring, when \mathbb{F} is a field (Euclidean domain)

Polynomial Rings

Lemma

$\mathbb{F}[x]$ is a principal ideal ring, when \mathbb{F} is a field

Lemma

Given two polynomials $f(x), g(x) \in \mathbb{F}[x]$ and let $d(x)=\operatorname{gcd}(f(x), g(x))$. Then $d(x)$ can be expressed as

$$
d(x)=\lambda(x) f(x)+\mu(x) g(x)
$$

Polynomial Rings

Lemma

$\mathbb{F}[x]$ is a principal ideal ring, when \mathbb{F} is a field

Lemma

Given two polynomials $f(x), g(x) \in \mathbb{F}[x]$ and let $d(x)=\operatorname{gcd}(f(x), g(x))$. Then $d(x)$ can be expressed as

$$
d(x)=\lambda(x) f(x)+\mu(x) g(x)
$$

Definition

A polynomial $p(x) \in \mathbb{F}[x]$ is said to be irreducible over \mathbb{F} if whenever $p(x)=a(x) b(x)$ with $a(x), b(x) \in \mathbb{F}[x]$, then one of $a(x)$ or $b(x)$ has degree 0 (i.e., is a constant).

Polynomial Rings

Lemma

Any polynomial in $\mathbb{F}[x]$ can be written in a unique manner as a product of irreducible polynomials in $\mathbb{F}[x]$.

Lemma

The ideal $A=(p(x))$ in $\mathbb{F}[x]$ is a maximal ideal iff $p(x)$ is irreducible over \mathbb{F}.

Polynomial Rings

Lemma

Any polynomial in $\mathbb{F}[x]$ can be written in a unique manner as a product of irreducible polynomials in $\mathbb{F}[x]$.

Lemma

The ideal $A=(p(x))$ in $\mathbb{F}[x]$ is a maximal ideal iff $p(x)$ is irreducible over \mathbb{F}.

Definition

The polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, where the $a_{0}, a_{1}, a_{2}, \ldots$, are integers is said to be primitive if the greatest common divisor of $a_{0}, a_{1}, \ldots, a_{n}$ is 1 .

Polynomial Rings

Definition

The content of the polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, where the a_{i} 's are $\in \mathbb{Z}$, is the greatest common divisor of the integers $a_{0}, a_{1}, \ldots, a_{n}$.

Polynomial Rings

Definition

The content of the polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, where the a_{i} 's are $\in \mathbb{Z}$, is the greatest common divisor of the integers $a_{0}, a_{1}, \ldots, a_{n}$.

Theorem

If the primitive polynomial $f(x)$ can be factored as the product of two polynomials having rational coefficients, it can be factored as the product of two polynomials having integer coefficients.

Polynomial Rings

Definition

The content of the polynomial $f(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$, where the a_{i} 's are $\in \mathbb{Z}$, is the greatest common divisor of the integers $a_{0}, a_{1}, \ldots, a_{n}$.

Theorem

If the primitive polynomial $f(x)$ can be factored as the product of two polynomials having rational coefficients, it can be factored as the product of two polynomials having integer coefficients.

Definition

A polynomial is said to be integer monic if all its coefficients are integers and its highest coefficient is 1 .

Polynomial Rings

Theorem (THE EISENSTEIN CRITERION)

Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$ be a polynomial with integer coefficients. Suppose that for some prime number $p, p \nmid a_{n}, p\left|a_{0}, p\right| a_{1}, p\left|a_{2}, \ldots, p\right| a_{n-1}, p^{2} \nmid a_{0}$. Then $f(x)$ is irreducible over the rationals.

Polynomial Rings

Lemma

If R is an integral domain, then so is $R[x]$.

Polynomial Rings

Lemma

If R is an integral domain, then so is $R[x]$.

Definition

An element a which is not a unit in R will be called irreducible (or a prime element ${ }^{a}$) if, whenever $a=b c$ with $b, c \in R$, then one of b or c must be a unit in R.
$a_{\text {in }}$ case of R is a UFD

Polynomial Rings

Definition

An integral domain, R, with identity element is a unique factorization domain (UFD) if any nonzero element in R is either a unit or can be written as the product of a finite number of irreducible elements of R and the the decomposition is unique up to the order and associates of the irreducible elements.

Polynomial Rings

Definition

An integral domain, R, with identity element is a unique factorization domain (UFD) if any nonzero element in R is either a unit or can be written as the product of a finite number of irreducible elements of R and the the decomposition is unique up to the order and associates of the irreducible elements.

Lemma

If R is a UFD and if $a, b \in R$, then a and b have a greatest common divisor $(a, b) \in R$.

Polynomial Rings

Lemma

If R is a unique factorization domain, then the product of two primitive polynomials in $R[x]$ is again a primitive polynomial in $R[x]$.

Lemma

If R is a unique factorization domain and if $p(x)$ is a primitive polynomial in $R[x]$, then it can be factored in a unique way as the product of irreducible elements in $R[x]$.

Polynomial Rings

Theorem
 If R is a unique factorization domain, then so is $R[x]$.

Ring Structure

Outline

(1) Group Theory

- Subgroups
- Cyclic Groups
- Normal Subgroups
- Homomorphism
(2) Rings and Fields
- Ideals and Quotient Rings
- Euclidean Rings
- Polynomial Rings

(3) Vector Spaces

(4) Extension Fields

- Finite Fields

Vector Spaces

Definition

A non-empty set \mathbf{V} is said to be a vector space over a field \mathbb{F}, is denoted by $(\mathbf{V},+, \cdot, \mathbb{F})$ if \mathbf{V} is an abelian group under an operation which we denote by + , and if for every $\alpha \in \mathbb{F}, v \in \mathbf{V}$ there is defined an element, written $\alpha v \in \mathbf{V}$ subject to
(i) $\alpha \cdot(v+w)=\alpha \cdot v+\alpha \cdot w$;
(ii) $(\alpha+\beta) \cdot v=\alpha \cdot v+\beta \cdot v$;
(iit) $\alpha \cdot(\beta \cdot v)=(\alpha \cdot \beta) . v$;
(iv) $1 . v=v$;
or all $\alpha, \beta \in \mathbb{F}, v, w \in \mathbf{V}$ (where the 1 represents the identity element of \mathbb{F} under multiplication).

Linear Independence and Bases

Definition

If \mathbf{V} is a vector space over \mathbb{F} and if $v_{1}, \ldots, v_{n} \in \mathbf{V}$ then any element of the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}
$$

where the $\alpha_{i} \in \mathbb{F}$, is a linear combination of v_{1}, \ldots, v_{n} over \mathbb{F}.

Linear Independence and Bases

Definition

If \mathbf{V} is a vector space over \mathbb{F} and if $v_{1}, \ldots, v_{n} \in \mathbf{V}$ then any element of the form

$$
\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}
$$

where the $\alpha_{i} \in \mathbb{F}$, is a linear combination of v_{1}, \ldots, v_{n} over \mathbb{F}.

Definition

If S is a nonempty subset of the vector space \mathbf{V}, then $L(S)$, the linear span of S, is the set of all linear combinations of finite sets of elements of S.

Linear Independence and Bases

Lemma
 $L(S)$ is a subspace of \mathbf{V}.

Linear Independence and Bases

Lemma

$L(S)$ is a subspace of \mathbf{V}.

Definition

If \mathbf{V} is a vector space and if v_{1}, \ldots, v_{n} are in \mathbf{V}, we say that they are linearly dependent over \mathbb{F} if there exist elements $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{F}$, not all of them $0, \mathrm{~s} / \mathrm{t}$

$$
\lambda_{1} v_{1}+\lambda_{2} v_{2}+\ldots+\lambda_{n} v_{n}=0
$$

If the vectors v_{1}, \ldots, v_{n} are not linearly dependent over \mathbb{F}, they are said to be linearly independent over \mathbb{F}.

Linear Independence and Bases

Lemma

If $v_{1}, \ldots, v_{n} \in \mathbf{V}$ are linearly independent, then every element in their linear span has a! representation in the form $\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}$ with the $\lambda_{i} \in \mathbb{F}$.

Theorem

If v_{1}, \ldots, v_{n} are in \mathbf{V} then either they are linearly independent or some v_{k} is a linear combination of the preceding ones, v_{1}, \ldots, v_{k-1}.

Linear Independence and Bases

Lemma

If $v_{1}, \ldots, v_{n} \in \mathbf{V}$ are linearly independent, then every element in their linear span has a! representation in the form $\lambda_{1} v_{1}+\ldots+\lambda_{n} v_{n}$ with the $\lambda_{i} \in \mathbb{F}$.

Theorem

If v_{1}, \ldots, v_{n} are in \mathbf{V} then either they are linearly independent or some v_{k} is a linear combination of the preceding ones, v_{1}, \ldots, v_{k-1}.

Corollary

If \mathbf{V} is a finite-dimensional vector space, then it contains a finite set v_{1}, \ldots, v_{n} of linearly independent elements whose linear span is \mathbf{V}.

Linear Independence and Bases

Definition

A subset S of a vector space \mathbf{V} is called a basis of \mathbf{V} if S consists of linearly independent elements ${ }^{a}$ and $\mathbf{V}=L(S)$.
${ }^{a}$ Any finite number of elements in S is linearly independent

Corollary

If \mathbf{V} is a finite-dimensional vector space and if u_{1}, \ldots, u_{m} span \mathbf{V} then some subset of u_{1}, \ldots, u_{m} forms a basis of \mathbf{V}.

Linear Independence and Bases

Definition

A subset S of a vector space \mathbf{V} is called a basis of \mathbf{V} if S consists of linearly independent elements ${ }^{a}$ and $\mathbf{V}=L(S)$.
${ }^{a}$ Any finite number of elements in S is linearly independent

Corollary

If \mathbf{V} is a finite-dimensional vector space and if u_{1}, \ldots, u_{m} span \mathbf{V} then some subset of u_{1}, \ldots, u_{m} forms a basis of \mathbf{V}.

Corollary

If \mathbf{V} is finite-dimensional over \mathbb{F} then any two bases of \mathbf{V} have the same number of elements.

Linear Independence and Bases

Corollary

If \mathbf{V} is finite-dimensional over \mathbb{F} then \mathbf{V} is isomorphic to $\mathbb{F}^{(n)}$ for a unique integer n; in fact, n is the number of elements in any basis of \mathbf{V} over \mathbb{F}.

Definition

The integer n in the above Corollary ?? is called the dimension of \mathbf{V} over \mathbb{F}.

Outline

(1) Group Theory

- Subgroups
- Cyclic Groups
- Normal Subgroups
- Homomorphism
(2) Rings and Fields
- Ideals and Quotient Rings
- Euclidean Rings
- Polynomial Rings
(3) Vector Spaces

4 Extension Fields

- Finite Fields

Field Extension

Definition

If \mathbb{K} is a subfield of a field \mathbb{M}, then \mathbb{M} is called an extension of the field \mathbb{K}.

Definition

Let \mathbb{M} be an extension of a field \mathbb{K}. An element $u \in \mathbb{M}$ is said to be algebraic over \mathbb{K} if u satisfies a polynomial over \mathbb{K} i.e., if elements $c_{0}, c_{1}, \ldots, c_{n}$ not all zero exit in \mathbb{K} such that

$$
c_{0}+c_{1} \cdot u+\ldots+c_{n} \cdot u^{n}=0
$$

Field Extension

Definition

An element of \mathbb{M} which is not algebraic is said to be transcendental over \mathbb{K}.

Definition

An extension of a field \mathbb{K} is called an algebraic extension, if every member of it, is algebraic over \mathbb{K}.

Field Extension

Definition

An element of \mathbb{M} which is not algebraic is said to be transcendental over \mathbb{K}.

Definition

An extension of a field \mathbb{K} is called an algebraic extension, if every member of it, is algebraic over \mathbb{K}.

Otherwise if \exists a single element in the extension which is transcendental over \mathbb{K}, the extension is called a transcendental extension of \mathbb{K}.

Extension as a Vector Space

- An extension \mathbb{M} of a field \mathbb{K} can be looked upon as a vector space over \mathbb{K}.

Extension as a Vector Space

- An extension \mathbb{M} of a field \mathbb{K} can be looked upon as a vector space over \mathbb{K}.
$\bullet \because \mathbb{M}$ is a field, \therefore it is already an additive commutative group.

Extension as a Vector Space

- An extension \mathbb{M} of a field \mathbb{K} can be looked upon as a vector space over \mathbb{K}.
- $\because \mathbb{M}$ is a field, \therefore it is already an additive commutative group.
- Now the product of an element of \mathbb{K} and an element of an element of \mathbb{M} is a product of two elements of \mathbb{M} and is therefore an element of \mathbb{M}.
- Hence, \mathbb{M} is a vector space over \mathbb{K}.

Definition

If \mathbb{M} is an extension of a field \mathbb{K}, then \mathbb{M} may be looked upon as a vector space over \mathbb{K}. The dimension of this vector space is called the degree of the extension, and is denoted by $[\mathbb{M}: \mathbb{K}]$.

Extension as a Vector Space

Theorem (Paul Halmos)

Any finite extension of a field is an algebraic extension of the field.

Extension as a Vector Space

Theorem (Paul Halmos)

Any finite extension of a field is an algebraic extension of the field.

Proof.

- Let \mathbb{M} be a finite extension of a field \mathbb{K} and $[\mathbb{M}: \mathbb{K}]=n$.
- Then for any $u \in \mathbb{M}$, the $(n+1)$ elements $1, u, \ldots, u^{n}$ must be linearly dependent over \mathbb{K}.
- Hence, elements $c_{0}, c_{1}, \ldots, c_{n}$, not all zero exists in \mathbb{K} such that

$$
c_{0} \cdot 1+c_{1} \cdot u+\cdots+c_{n} u^{n}=0 .
$$

- This shows that u is an algebraic over \mathbb{K}; but u was an arbitrary element of \mathbb{M}.
- Thus, it is proved that \mathbb{M} is an algebraic extension of \mathbb{K}.

Extension as a Vector Space

Exercise

If \mathbb{M} is an extension of a field \mathbb{K} and $[\mathbb{M}: \mathbb{K}]=1$, show that $\mathbb{M}=\mathbb{K}$.

Extension as a Vector Space

Exercise

If \mathbb{M} is an extension of a field \mathbb{K} and $[\mathbb{M}: \mathbb{K}]=1$, show that $\mathbb{M}=\mathbb{K}$.

Extension as a Vector Space

Theorem (Transitivity of Finite Extensions)

If $\mathbb{B}, \mathbb{C} \& \mathbb{D}$ are 3 fields $s / t \mathbb{B}$ is a finite extension of \mathbb{C} and \mathbb{C} is finite extension of \mathbb{D}, then \mathbb{B} is finite extension of \mathbb{D}, and $[\mathbb{B}: \mathbb{D}]=[\mathbb{B}: \mathbb{C}] \times[\mathbb{C}: \mathbb{D}]$.

Extension as a Vector Space

Theorem (Transitivity of Finite Extensions)

If $\mathbb{B}, \mathbb{C} \& \mathbb{D}$ are 3 fields $s / t \mathbb{B}$ is a finite extension of \mathbb{C} and \mathbb{C} is finite extension of \mathbb{D}, then \mathbb{B} is finite extension of \mathbb{D}, and $[\mathbb{B}: \mathbb{D}]=[\mathbb{B}: \mathbb{C}] \times[\mathbb{C}: \mathbb{D}]$.

Proof.

- Let $[\mathbb{B}: \mathbb{C}]=m \&[\mathbb{C}: \mathbb{D}]=n$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of \mathbb{B} over \mathbb{C} and $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathbb{C} over \mathbb{D}.

Extension as a Vector Space

Theorem (Transitivity of Finite Extensions)

If $\mathbb{B}, \mathbb{C} \& \mathbb{D}$ are 3 fields $s / t \mathbb{B}$ is a finite extension of \mathbb{C} and \mathbb{C} is finite extension of \mathbb{D}, then \mathbb{B} is finite extension of \mathbb{D}, and $[\mathbb{B}: \mathbb{D}]=[\mathbb{B}: \mathbb{C}] \times[\mathbb{C}: \mathbb{D}]$.

Proof.

- Let $[\mathbb{B}: \mathbb{C}]=m \&[\mathbb{C}: \mathbb{D}]=n$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of \mathbb{B} over \mathbb{C} and $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathbb{C} over \mathbb{D}.
- Then any $t \in \mathbb{B}$ is of the form $t=\sum_{i=1}^{n} c_{i} u_{i}$, for certain elements $c_{1}, \ldots, c_{m} \in C$.

Extension as a Vector Space

Theorem (Transitivity of Finite Extensions)

If $\mathbb{B}, \mathbb{C} \& \mathbb{D}$ are 3 fields $s / t \mathbb{B}$ is a finite extension of \mathbb{C} and \mathbb{C} is finite extension of \mathbb{D}, then \mathbb{B} is finite extension of \mathbb{D}, and $[\mathbb{B}: \mathbb{D}]=[\mathbb{B}: \mathbb{C}] \times[\mathbb{C}: \mathbb{D}]$.

Proof.

- Let $[\mathbb{B}: \mathbb{C}]=m \&[\mathbb{C}: \mathbb{D}]=n$. Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of \mathbb{B} over \mathbb{C} and $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of \mathbb{C} over \mathbb{D}.
- Then any $t \in \mathbb{B}$ is of the form $t=\sum_{i=1}^{n} c_{i} u_{i}$, for certain elements $c_{1}, \ldots, c_{m} \in C$.
- $\because c_{1}, \ldots, c_{m} \in \mathbb{C}$ each of them is a linear combination of $\left\{v_{1}, \ldots, v_{n}\right\}$ with coefficient from \mathbb{D}.
- Let $c_{i}=\sum_{j=1}^{n} d_{i j} v_{j}$, where $d_{i j}$'s $\in \mathbb{D}$. But then

$$
t=\sum_{i=1}^{m}\left(\sum_{j=1}^{n} d_{i j} v_{j}\right) u_{i}=\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} v_{j} u_{i}
$$

Extension as a Vector Space

Proof.

- This shows that the $m n$ elements $v_{j} u_{i}$ generate \mathbb{B} over \mathbb{D}.

Extension as a Vector Space

Proof.

- This shows that the $m n$ elements $v_{j} u_{i}$ generate \mathbb{B} over \mathbb{D}.
- We show that these elements are independent over \mathbb{D}. For this, let $\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} v_{j} u_{i}=0$. This can be written as $\sum_{i=1}^{m}\left(\sum_{j=1}^{n} d_{i j} v_{j}\right) u_{i}=0$.
- Since u vectors are independent over \mathbb{C} we get $\sum_{j=1}^{n} d_{i j} v_{j}=0$, for $1 \leq i \leq m$.
- However, v vectors are independent over \mathbb{D} we get $d_{i j}=0$, for $1 \leq i \leq m \& 1 \leq j \leq n$.
- Hence, the $m n$ vectors $v_{j} u_{i}$ are indeed independent over \mathbb{D} showing that these vectors form a basis of \mathbb{B} over \mathbb{D}.

Extension as a Vector Space

Proof.

- This shows that the $m n$ elements $v_{j} u_{i}$ generate \mathbb{B} over \mathbb{D}.
- We show that these elements are independent over \mathbb{D}. For this, let $\sum_{i=1}^{m} \sum_{j=1}^{n} d_{i j} v_{j} u_{i}=0$. This can be written as $\sum_{i=1}^{m}\left(\sum_{j=1}^{n} d_{i j} v_{j}\right) u_{i}=0$.
- Since u vectors are independent over \mathbb{C} we get $\sum_{j=1}^{n} d_{i j} v_{j}=0$, for $1 \leq i \leq m$.
- However, v vectors are independent over \mathbb{D} we get $d_{i j}=0$, for $1 \leq i \leq m \& 1 \leq j \leq n$.
- Hence, the $m n$ vectors $v_{j} u_{i}$ are indeed independent over \mathbb{D} showing that these vectors form a basis of \mathbb{B} over \mathbb{D}.
- Hence, $[\mathbb{B}: \mathbb{D}]=m n$ and thus $[\mathbb{B}: \mathbb{D}]=[\mathbb{B}: \mathbb{C}] \times[\mathbb{C}: \mathbb{D}]$.

Extension as a Vector Space

Exercise

If \mathbb{B} is a finite extension of a field \mathbb{D} and \mathbb{C} is a field intermediate between \mathbb{B} and \mathbb{D}, show that \mathbb{B} is a finite extension of \mathbb{C} and \mathbb{C} is a finite extension of \mathbb{D}.

Extension as a Vector Space

Exercise

If \mathbb{B} is a finite extension of a field \mathbb{D} and \mathbb{C} is a field intermediate between \mathbb{B} and \mathbb{D}, show that \mathbb{B} is a finite extension of \mathbb{C} and \mathbb{C} is a finite extension of \mathbb{D}.

Corollary

If $[\mathbb{B}: \mathbb{C}]=p$, a prime number then there cannot be any field properly in between \mathbb{B} and \mathbb{C}.

Extension as a Vector Space

Exercise

If \mathbb{B} is a finite extension of a field \mathbb{D} and \mathbb{C} is a field intermediate between \mathbb{B} and \mathbb{D}, show that \mathbb{B} is a finite extension of \mathbb{C} and \mathbb{C} is a finite extension of \mathbb{D}.

Corollary

If $[\mathbb{B}: \mathbb{C}]=p$, a prime number then there cannot be any field properly in between \mathbb{B} and \mathbb{C}.

Exercise

(1) If \mathbb{B} and \mathbb{C} are finite extension of a field \mathbb{D} and $\mathbb{D} \subset \mathbb{C} \subset \mathbb{B}$, then show that \mathbb{B} is a finite extension of \mathbb{D}.
(2) If \mathbb{B} is a finite extension of a field \mathbb{D} and \mathbb{C} is a subfield of \mathbb{B} then show that $[\mathbb{C}: \mathbb{D}]$ divides $[\mathbb{B}: \mathbb{D}]$
(3) The field of complex numbers \mathbb{C} is a finite extension of degree 2 over the real field \mathbb{R}.

Adjunction

- Let \mathbb{M} be an extension of a field \mathbb{K} and let $G \subset \mathbb{M}$.
- Then the intersection of all subfields of \mathbb{M} containing \mathbb{K} and G is the smallest subfield of \mathbb{M} containing \mathbb{K} and G.
- This subfield is denoted by $\mathbb{K}(G)$ and is called the subfield of \mathbb{M} obtained from \mathbb{K} by the adjunction of the subset G or simply ' \mathbb{K} adjunction G.
- If G is a finite set equal to $\left\{a_{1}, \ldots, a_{n}\right\}$ then $\mathbb{K}(G)$ is also written as $\mathbb{K}\left(a_{1}, \ldots, a_{n}\right)$.

Adjunction

Theorem

If \mathbb{M} is a finite extension of a field \mathbb{K}, then \mathbb{M} can be obtained by adjoining a finite number of elements u_{1}, \ldots, u_{m} to \mathbb{K} so that $\mathbb{M}=\mathbb{K}\left(u_{1}, \ldots, u_{m}\right)$ where u_{1}, \ldots, u_{m} are algebraic over \mathbb{K}.

Adjunction

Theorem

If \mathbb{M} is a finite extension of a field \mathbb{K}, then \mathbb{M} can be obtained by adjoining a finite number of elements u_{1}, \ldots, u_{m} to \mathbb{K} so that $\mathbb{M}=\mathbb{K}\left(u_{1}, \ldots, u_{m}\right)$ where u_{1}, \ldots, u_{m} are algebraic over \mathbb{K}.

Proof.

- $\because \mathbb{M}$ is a finite extension of \mathbb{K} each element of \mathbb{M} is algebraic over \mathbb{K}.
- If $\mathbb{M}=\mathbb{K}$ the theorem is vacuously true.
- If $\mathbb{M} \neq \mathbb{K}$ then \exists at least one element $u_{1} \in \mathbb{M} \backslash \mathbb{K}$. If $\mathbb{M}=\mathbb{K}\left(u_{1}\right)$ the theorem is proved.
- If $\mathbb{M} \neq \mathbb{K}\left(u_{1}\right), \exists$ at least one element $u_{2} \in \mathbb{M} \backslash \mathbb{K}\left(u_{1}\right)$. If $\mathbb{M}=\mathbb{K}\left(u_{1}, u_{2}\right)$ the theorem is proved.
- If not, we carry on the process and after a finite number of steps we shall arrive at an extension $\mathbb{K}\left(u_{1}, \ldots, u_{m}\right) \mathrm{s} / \mathrm{t} \mathbb{M}=\mathbb{K}\left(u_{1}, \ldots, u_{m}\right) . \because$ at each step we arrive at proper extension of the previous one and thus an extension ≥ 2; but \mathbb{M} is of finite degree over \mathbb{K}.

Adjunction

Definition

Let \mathbb{M} be an extension of a field \mathbb{K} and u be any element of \mathbb{M}. Then the field $\mathbb{K}(u)$ obtained from \mathbb{K} by adjunction of the single element u is called a simple extension of \mathbb{K}.

Adjunction

Definition

Let \mathbb{M} be an extension of a field \mathbb{K} and u be any element of \mathbb{M}. Then the field $\mathbb{K}(u)$ obtained from \mathbb{K} by adjunction of the single element u is called a simple extension of \mathbb{K}.

The extension is called a simple algebraic extension or a simple transcendental extension according as u is algebraic or transcendental over \mathbb{K}.

Adjunction

Definition

Let \mathbb{M} be an extension of a field \mathbb{K} and u be any element of \mathbb{M}. Then the field $\mathbb{K}(u)$ obtained from \mathbb{K} by adjunction of the single element u is called a simple extension of \mathbb{K}.

The extension is called a simple algebraic extension or a simple transcendental extension according as u is algebraic or transcendental over \mathbb{K}.

Definition

Let \mathbb{M} be an extension of a field \mathbb{K} and $u \in \mathbb{M}$ be algebraic over \mathbb{K}. Then the monic polynomial of the least degree over \mathbb{K} satisfied by u is called the minimal polynomial of u over \mathbb{K}.

Adjunction

Definition

Let \mathbb{M} be an extension of a field \mathbb{K} and u be any element of \mathbb{M}. Then the field $\mathbb{K}(u)$ obtained from \mathbb{K} by adjunction of the single element u is called a simple extension of \mathbb{K}.

The extension is called a simple algebraic extension or a simple transcendental extension according as u is algebraic or transcendental over \mathbb{K}.

Definition

Let \mathbb{M} be an extension of a field \mathbb{K} and $u \in \mathbb{M}$ be algebraic over \mathbb{K}. Then the monic polynomial of the least degree over \mathbb{K} satisfied by u is called the minimal polynomial of u over \mathbb{K}.

If $f(x)$ is the minimal polynomial of u over \mathbb{K}, then degree of $f(x)$ is also called the degree of u over \mathbb{K}, written as $\operatorname{deg}(u)$ over \mathbb{K}.

Adjunction

Exercise

If p is a prime and \mathbb{Q} the rational field, then show that $\mathbb{Q}(\sqrt{p})=\{a+b \sqrt{p}: a, b \in \mathbb{Q}\}$

Adjunction

Exercise

If p is a prime and \mathbb{Q} the rational field, then show that
$\mathbb{Q}(\sqrt{p})=\{a+b \sqrt{p}: a, b \in \mathbb{Q}\}$

Solution

- Let $\alpha=\sqrt{p}$. Then $\alpha^{2}=p$ i.e., $\alpha^{2}-p=0$.
- Thus, $\alpha=\sqrt{p}$ satisfies the polynomial $x^{2}-p$ over \mathbb{Q}. But \sqrt{p} can't satisfy a polynomial of degree <2 i.e., a polynomial of degree 1 over $\mathbb{Q} \because \sqrt{p} \notin \mathbb{Q}$.

Adjunction

Exercise

If p is a prime and \mathbb{Q} the rational field, then show that $\mathbb{Q}(\sqrt{p})=\{a+b \sqrt{p}: a, b \in \mathbb{Q}\}$

Solution

- Let $\alpha=\sqrt{p}$. Then $\alpha^{2}=p$ i.e., $\alpha^{2}-p=0$.
- Thus, $\alpha=\sqrt{p}$ satisfies the polynomial $x^{2}-p$ over \mathbb{Q}. But \sqrt{p} can't satisfy a polynomial of degree <2 i.e., a polynomial of degree 1 over $\mathbb{Q} \because \sqrt{p} \notin \mathbb{Q}$.
- Hence, $\operatorname{deg} \sqrt{p}$ over $\mathbb{Q}=2$.
- Thus, $\{1, \sqrt{p}\}$ forms a basis of $\mathbb{Q}(\sqrt{p})$ over \mathbb{Q}.
- Hence, any number of $\mathbb{Q}(\sqrt{p})$ is of the form $a .1+b \cdot \sqrt{p}$ where $a, b \in \mathbb{Q}$.

Adjunction

Exercise

Find the inverse of $5 u+6$ as a polynomial in u over the rationals given that the minimal polynomial of u over the rationals is $x^{2}+7 x-11$.

Adjunction

Exercise

Find the inverse of $5 u+6$ as a polynomial in u over the rationals given that the minimal polynomial of u over the rationals is $x^{2}+7 x-11$.

Solution

We have $u^{2}+7 u-11=0$ or $u^{2}=-7 u+11$. Let $a u+b$ be the required inverse of $5 u+6$.

Adjunction

Exercise

Find the inverse of $5 u+6$ as a polynomial in u over the rationals given that the minimal polynomial of u over the rationals is $x^{2}+7 x-11$.

Solution

We have $u^{2}+7 u-11=0$ or $u^{2}=-7 u+11$.
Let $a u+b$ be the required inverse of $5 u+6$.
We must have $1=(5 u+6)(a u+b)$

$$
\begin{aligned}
& =5 a u^{2}+(6 a+5 b) u+6 b \\
& =5 a(-7 u+11)+(6 a+5 b) u+6 b \\
& =(-29 a+5 b) u+(55 a+6 b)
\end{aligned}
$$

So, we have $-29 a+5 b=0 \quad \& \quad 55 a+6 b=1$
Therefore the required inverse is $\frac{5}{449} u+\frac{29}{449}$

Algebraic Closure

Definition

Let \mathbb{M} be an extension of a field \mathbb{K}. Then the set \mathbb{E} of all elements of \mathbb{M} which are algebraic over \mathbb{K} is a subfield of \mathbb{M} containing \mathbb{K}. This field \mathbb{E} is called the algebraic closure of \mathbb{K} in \mathbb{M}.

Algebraic Closure

Definition

Let \mathbb{M} be an extension of a field \mathbb{K}. Then the set \mathbb{E} of all elements of \mathbb{M} which are algebraic over \mathbb{K} is a subfield of \mathbb{M} containing \mathbb{K}. This field \mathbb{E} is called the algebraic closure of \mathbb{K} in \mathbb{M}.

Definition

Let \mathbb{K} be any field. Then an algebraic extension $\mathbb{\mathbb { K }}$ is said to be algebraic closure iff $\mathbb{\mathbb { K }}$ is algebrically closed over \mathbb{K}.

Algebraic Closure

Definition

Let \mathbb{M} be an extension of a field \mathbb{K}. Then the set \mathbb{E} of all elements of \mathbb{M} which are algebraic over \mathbb{K} is a subfield of \mathbb{M} containing \mathbb{K}. This field \mathbb{E} is called the algebraic closure of \mathbb{K} in \mathbb{M}.

Definition

Let \mathbb{K} be any field. Then an algebraic extension $\mathbb{\mathbb { K }}$ is said to be algebraic closure iff $\mathbb{\mathbb { K }}$ is algebrically closed over \mathbb{K}.

Note $1:$ If \mathbb{F} is an algebraically closed field, then the algebraic closure of \mathbb{F} is \mathbb{F} itself.

Note 2: (Fundamental Theorem of Algebra) The complex field \mathbb{C} is algebraically closed.

Finite Fields

Definition

A finite field is a field \mathbb{F} which contains a finite number of elements.

Finite Fields

Definition

A finite field is a field \mathbb{F} which contains a finite number of elements.

Fact

(1) If \mathbb{F} is a finite field, then \mathbb{F} contains p^{m} elements for some prime p and integer $m \geq 1$.

Finite Fields

Definition

A finite field is a field \mathbb{F} which contains a finite number of elements.

Fact

(1) If \mathbb{F} is a finite field, then \mathbb{F} contains p^{m} elements for some prime p and integer $m \geq 1$.
(2) For every prime power order p^{m}, there is a ! finite field of order p^{m}. This field is denoted by $\mathbb{F}_{p^{m}}$, or sometimes by $G F\left(p^{m}\right)$.

Finite Fields

Definition

A finite field is a field \mathbb{F} which contains a finite number of elements.

Fact

(1) If \mathbb{F} is a finite field, then \mathbb{F} contains p^{m} elements for some prime p and integer $m \geq 1$.
(2) For every prime power order p^{m}, there is a ! finite field of order p^{m}. This field is denoted by $\mathbb{F}_{p^{m}}$, or sometimes by $G F\left(p^{m}\right)$.
(3) For $m=1, \mathbb{F}_{p}$ or $G F(p)$ is a field. If p is a prime then \mathbb{Z}_{p} is a field.

$$
\mathbb{F}_{p} \cong G F(p) \cong \mathbb{Z}_{p}
$$

Finite Fields

Fact

(1) Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
(1) Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
(IT) Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.

Finite Fields

Fact

(1) Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
(1) Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
(I) Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.
(2) The non-zero elements of \mathbb{F}_{q} form a group under multiplication called the multiplicative group of \mathbb{F}_{q}, denoted by \mathbb{F}_{q}^{*}.

Finite Fields

Fact

(1) Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
(1) Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
(I) Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.
(2) The non-zero elements of \mathbb{F}_{q} form a group under multiplication called the multiplicative group of \mathbb{F}_{q}, denoted by \mathbb{F}_{q}^{*}.
(3) \mathbb{F}_{q}^{*} is a cyclic group of order $q-1$. Hence $a^{q}=a, \forall a \in \mathbb{F}_{q}$.

Finite Fields

Fact

(1) Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
(1) Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
(I) Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.
(2) The non-zero elements of \mathbb{F}_{q} form a group under multiplication called the multiplicative group of \mathbb{F}_{q}, denoted by \mathbb{F}_{q}^{*}.
(3) \mathbb{F}_{q}^{*} is a cyclic group of order $q-1$. Hence $a^{q}=a, \forall a \in \mathbb{F}_{q}$.
(4) A generator of the cyclic group \mathbb{F}_{q}^{*} is called a primitive element or generator of \mathbb{F}_{q}^{*}.

Finite Fields

Subfields of $\mathbb{F}_{2^{30}}$ and their relation:

Finite Fields

Subfields of $\mathbb{F}_{2^{30}}$ and their relation:

Finite Fields

Subfields of $\mathbb{F}_{q^{36}}$ and their relation:

Finite Fields

Subfields of $\mathbb{F}_{q^{36}}$ and their relation:

Construction of Finite Field of Order p^{m}

Construction of Finite Field of Order p^{m}

- First select an irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m.
- The ideal $<f(x)>$ is

Construction of Finite Field of Order p^{m}

- First select an irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m.
- The ideal $<f(x)>$ is a maximal ideal.
- Then $Z_{p}[x] /<f(x)>$ is a

Construction of Finite Field of Order p^{m}

- First select an irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m.
- The ideal $<f(x)>$ is a maximal ideal.
- Then $Z_{p}[x] /<f(x)>$ is a finite field of order p^{m}.
- For each $m \geq 1, \exists$ a monic irreducible polynomial of degree m over \mathbb{Z}_{p}.

Hence, every finite field has a polynomial basis representation.

Construction of Finite Field of Order p^{m}

Theorem

The number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree n is given by

$$
\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}
$$

where μ is Möbius function.

Construction of Finite Field of Order p^{m}

Theorem

The number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree n is given by

$$
\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}
$$

where μ is Möbius function.

Definition

The Möbius function μ is the function on \mathbb{N} defined by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1, \\ (-1)^{k} & \text { if } n \text { is the product of } k \text { distinct primes } \\ 0 & \text { if } n \text { is divisible by square of a prime }\end{cases}
$$

Construction of Finite Field of Order 2^{4}

(1) First consider α is a root of the irreducible polynomial $x^{4}+x+1$ over $G F(2)$
(1) $\alpha^{4}+\alpha+1=0 \Rightarrow \alpha^{4}=\alpha+1$

Construction of Finite Field of Order 2^{4}

(1) First consider α is a root of the irreducible polynomial $x^{4}+x+1$ over $G F(2)$
(1) $\alpha^{4}+\alpha+1=0 \Rightarrow \alpha^{4}=\alpha+1$

$$
\begin{array}{lll}
\alpha^{0}=1 & \alpha^{1}=\alpha & \alpha^{2}=\alpha^{2} \\
\alpha^{4}= &
\end{array}
$$

Construction of Finite Field of Order 2^{4}

(1) First consider α is a root of the irreducible polynomial $x^{4}+x+1$ over $G F(2)$
(1) $\alpha^{4}+\alpha+1=0 \Rightarrow \alpha^{4}=\alpha+1$

$$
\begin{array}{lll}
\alpha^{0}=1 & \alpha^{1}=\alpha & \alpha^{2}=\alpha^{2} \\
\alpha^{4}=\alpha+1 & \alpha^{5}= &
\end{array}
$$

Construction of Finite Field of Order 2^{4}

(1) First consider α is a root of the irreducible polynomial $x^{4}+x+1$ over $G F(2)$
(1) $\alpha^{4}+\alpha+1=0 \Rightarrow \alpha^{4}=\alpha+1$

$$
\begin{array}{llll}
\alpha^{0}=1 & \alpha^{1}=\alpha & \alpha^{2}=\alpha^{2} & \alpha^{3}=\alpha^{3} \\
\alpha^{4}=\alpha+1 & \alpha^{5}=\alpha^{2}+\alpha & \alpha^{6}=\alpha^{3}+\alpha^{2} & \alpha^{7}=\alpha^{3}+\alpha+1 \\
\alpha^{8}=\alpha^{2}+1 & \alpha^{9}=\alpha^{3}+\alpha & \alpha^{10}=\alpha^{2}+\alpha+1 & \alpha^{11}=\alpha^{3}+\alpha^{2}+\alpha \\
\alpha^{12}=\alpha^{3}+\alpha^{2}+\alpha+1 & \alpha^{13}=\alpha^{3}+\alpha^{2}+1 & \alpha^{14}=\alpha^{3}+1 & \alpha^{15}=1
\end{array}
$$

Construction of Finite Field of Order 2^{4}

(1) First consider α is a root of the irreducible polynomial $x^{4}+x+1$ over $G F(2)$
(1) $\alpha^{4}+\alpha+1=0 \Rightarrow \alpha^{4}=\alpha+1$

$$
\begin{array}{llll}
\alpha^{0}=1 & \alpha^{1}=\alpha & \alpha^{2}=\alpha^{2} & \alpha^{3}=\alpha^{3} \\
\alpha^{4}=\alpha+1 & \alpha^{5}=\alpha^{2}+\alpha & \alpha^{6}=\alpha^{3}+\alpha^{2} & \alpha^{7}=\alpha^{3}+\alpha+1 \\
\alpha^{8}=\alpha^{2}+1 & \alpha^{9}=\alpha^{3}+\alpha & \alpha^{10}=\alpha^{2}+\alpha+1 & \alpha^{11}=\alpha^{3}+\alpha^{2}+\alpha \\
\alpha^{12}=\alpha^{3}+\alpha^{2}+\alpha+1 & \alpha^{13}=\alpha^{3}+\alpha^{2}+1 & \alpha^{14}=\alpha^{3}+1 & \alpha^{15}=1
\end{array}
$$

(II) Now Consider the irreducible polynomial $x^{4}+x^{3}+x^{2}+x+1$ or $x^{4}+x^{3}+1$ over $G F(2)$.

Construction of Finite Field of Order 2^{5}

(1) First consider the irreducible polynomial $x^{5}+x^{4}+x^{3}+x^{2}+x+1$
(1) Next consider the irreducible polynomial $x^{5}+x^{2}+1$

Computing Multiplicative Inverses in $\mathbb{F}_{p^{m}}$

Algorithm

Input: a non-zero polynomial $g(x) \in \mathbb{F}_{p^{m}}{ }^{2}$.
Output: $g(x)^{-1} \in \mathbb{F}_{p^{m}}$.

Computing Multiplicative Inverses in $\mathbb{F}_{p^{m}}$

Algorithm

Input: a non-zero polynomial $g(x) \in \mathbb{F}_{p^{m}}$ a.
Output: $g(x)^{-1} \in \mathbb{F}_{p^{m}}$.
(1) Use the extended Euclidean algorithm for polynomials to find 2 polynomials $s(x) \& t(x) \in \mathbb{Z}_{p}[x] \mathrm{s} / \mathrm{t}$

$$
s(x) g(x)+t(x) f(x)=1
$$

Computing Multiplicative Inverses in $\mathbb{F}_{p^{m}}$

Algorithm

Input: a non-zero polynomial $g(x) \in \mathbb{F}_{p^{m}}$ a.
Output: $g(x)^{-1} \in \mathbb{F}_{p^{m}}$.
(1) Use the extended Euclidean algorithm for polynomials to find 2 polynomials $s(x) \& t(x) \in \mathbb{Z}_{p}[x]$ s/t

$$
s(x) g(x)+t(x) f(x)=1 .
$$

(2) Return $(s(x))$.
${ }^{\text {a }}$ The elements of the field $\mathbb{F}_{p^{m}}$ are represented as $\left.\mathbb{Z}_{p}[x] /<f(x)\right\rangle$, where $f(x) \in \mathbb{Z}_{p}[x]$ is an irreducible polynomial of degree m over \mathbb{Z}_{p}.

Finite Fields

Definition

An irreducible polynomial $f \in \mathbb{Z}_{p}[x]$ of degree m is called a primitive polynomial if α is a generator of $\mathbb{F}_{p^{m}}^{*}$, the multiplicative group of all the non-zero elements in $\mathbb{F}_{p^{m}}=\mathbb{Z}_{p}[x] /<f(x)>$, where α is a root of the polynomial $f(x)$ over its extension field.

Finite Fields

Definition

An irreducible polynomial $f \in \mathbb{Z}_{p}[x]$ of degree m is called a primitive polynomial if α is a generator of $\mathbb{F}_{p^{m}}^{*}$, the multiplicative group of all the non-zero elements in $\left.\mathbb{F}_{p^{m}}=\mathbb{Z}_{p}[x] /<f(x)\right\rangle$, where α is a root of the polynomial $f(x)$ over its extension field.

- The irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m is a primitive polynomial iff $f(x) \mid x^{k}-1$ for $k=p^{m}-1$ and for no smaller positive integer k.

Finite Fields

Definition

An irreducible polynomial $f \in \mathbb{Z}_{p}[x]$ of degree m is called a primitive polynomial if α is a generator of $\mathbb{F}_{p^{m}}^{*}$, the multiplicative group of all the non-zero elements in $\left.\mathbb{F}_{p^{m}}=\mathbb{Z}_{p}[x] /<f(x)\right\rangle$, where α is a root of the polynomial $f(x)$ over its extension field.

- The irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m is a primitive polynomial iff $f(x) \mid x^{k}-1$ for $k=p^{m}-1$ and for no smaller positive integer k.
- For each $m \geq 1$, ヨ a monic primitive polynomial of degree m over \mathbb{Z}_{p}. In fact, there are precisely $\frac{\phi\left(p^{m}-1\right)}{m}$ such polynomials.

References

John B. Fraleigh,
A First Course in Abstract Algebra, Pearson, 2014.
I. N. Herstein, Topics in Algebra, John Wiley \& Sons, 1975.

Alko R. Meijer,
Algebra for Cryptologists, Springer, 2016.
Gerard O'Regan,
Guide to Discrete Mathematics: An Accessible Introduction to the History, Theory, Logic and Applications, Springer 2016.

The End

Thanks a lot for your attention!

[^0]: ${ }^{1} T$ is the smallest in the following sense:
 if H is a subgroup and $S \subset H$ then $T \subset H$

[^1]: ${ }^{1} T$ is the smallest in the following sense:
 if H is a subgroup and $S \subset H$ then $T \subset H$

[^2]: ${ }^{a^{\text {Hilbert }}}$ first introduced the term ring

