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Disclaimers

1
All the pictures used in this presentation are taken from freely available
websites.

2
If there is a reference on a slide all of the information on that slide is
attributable to that source whether quotation marks are used or not.
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Group Theory

Group

Exercise
Solve the following equations:

1 a + x = b & y + a = b

2 a.x = b & y.a = b

Solution
First, we try to solve a + x = b

a + x = b
(−a) + (a + x) = (−a) + b

(−a + a) + x = −a + b
0 + x = −a + b

x = −a + b
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Group Theory

Binary Operation

Definition
Let X be a non-void set. Then a binary operation in X is a function

f : S (⊂ X × X)→ X.

Usually, the binary operation f is denoted by ‘◦’ or ‘+’ or ‘·’ etc.

If we use ‘◦’ is the binary operation, then f (x, y) is denoted by x ◦ y

If S = X × X, then we say that X is closed w.r.t. the binary
operation
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Group Theory

Set & Structure

Definition
A set is a well defined collection of objects.

Definition
An algebraic structure is a set together with (a)some binary
operation(s).
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Group Theory

Group

Definition

(i) Let G be a non-empty set with a binary operation ◦ defined on it. Then
(G, ◦) is said to be a groupoid or magma if ◦ is closed
i.e., if ◦ : G ×G −→ G.

(ii) A set G with an operation ◦ is said to be a semigroup if G is a groupoid
and ◦ is associative.

(iii) A set G with an operation ◦ is said to be a monoid if G is a semigroup
and ∃ an element e ∈ Gm s/t g.e = e.g = g ∀ g ∈ G.

(iv) For each x ∈ G, ∃ an element y ∈ G s/t y ◦ x = x ◦ y = e.
Usually, y is denoted by x−1.

If G satisfies all the above, it is said to be a Group.

If x ◦ y = y ◦ x ∀ x, y ∈ G, G is called abelian or commutative group.
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Group Theory

Exercises

Exercise

1 Give an example of a groupoid which is not a semigroup.

2 Give an example of a semigroup which is not a monoid.

3 Give an example of a monoid which is not a group.

4 Give an example of a semigroup which is not a group.
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Group Theory

Group

Example
1 (Z,+)
2 (Q,+), (Q∗, ·)
3 (R,+), (C,+), (R∗, ·), (C∗, ·)

4 (Zn,+)
5 (Z∗p, ·)
6 ({1,−1}, ·)
7 (S n, ◦)

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 10 / 144



Group Theory

Group

Example
1 (Z,+)
2 (Q,+), (Q∗, ·)
3 (R,+), (C,+), (R∗, ·), (C∗, ·)
4 (Zn,+)
5 (Z∗p, ·)

6 ({1,−1}, ·)
7 (S n, ◦)

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 10 / 144



Group Theory

Group

Example
1 (Z,+)
2 (Q,+), (Q∗, ·)
3 (R,+), (C,+), (R∗, ·), (C∗, ·)
4 (Zn,+)
5 (Z∗p, ·)
6 ({1,−1}, ·)

7 (S n, ◦)

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 10 / 144



Group Theory

Group

Example
1 (Z,+)
2 (Q,+), (Q∗, ·)
3 (R,+), (C,+), (R∗, ·), (C∗, ·)
4 (Zn,+)
5 (Z∗p, ·)
6 ({1,−1}, ·)
7 (S n, ◦)

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 10 / 144



Group Theory

Group

Example (S 3)
Let us consider the following important example S 3 under composition
of functions.

ρ0 =

(
1 2 3
1 2 3

)
, ρ1 =

(
1 2 3
2 3 1

)
, ρ2 =

(
1 2 3
3 1 2

)
,

µ1 =

(
1 2 3
1 3 2

)
, µ2 =

(
1 2 3
3 2 1

)
, µ3 =

(
1 2 3
2 1 3

)
.
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Group Theory

Group

Example (S 3)

◦ ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3

ρ1

ρ1 ρ2 ρ0 µ3 µ1 µ2

ρ2 ρ2 ρ0 ρ1 µ2 µ3 µ1

µ1 µ1 µ2 µ3 ρ0 ρ1 ρ2

µ2 µ2 µ3 µ1 ρ2 ρ0 ρ1

µ3 µ3 µ1 µ2 ρ1 ρ2 ρ0
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Group Theory

Group

Theorem

Let (G, ◦) be a group and e` be a left identity and for each x ∈ G, x−1
`

denote the left inverse of x.

(i) Then e` is the ! two sided identity in G.
(ii) x−1

` is the ! two sided inverse of x for each x ∈ G.

Note:
(a) If e′ is any identify whether left or right then e′ = e`.

(b) If y is any left or right inverse of x then y = x−1
` .

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 13 / 144



Group Theory

Group

Theorem

Let (G, ◦) be a group and e` be a left identity and for each x ∈ G, x−1
`

denote the left inverse of x.

(i) Then e` is the ! two sided identity in G.
(ii) x−1

` is the ! two sided inverse of x for each x ∈ G.

Note:
(a) If e′ is any identify whether left or right then e′ = e`.

(b) If y is any left or right inverse of x then y = x−1
` .

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 13 / 144



Group Theory

Group

Theorem

Let (G, ◦) be a group and e` be a left identity and for each x ∈ G, x−1
`

denote the left inverse of x.

(i) Then e` is the ! two sided identity in G.
(ii) x−1

` is the ! two sided inverse of x for each x ∈ G.

Note:
(a) If e′ is any identify whether left or right then e′ = e`.

(b) If y is any left or right inverse of x then y = x−1
` .

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 13 / 144



Group Theory

Some Preliminary Lemmas

Lemma

If (G, ·) [G] is a group, then

(i) The identity element of G is !.
(ii) Every a ∈ G has a ! inverse in G.
(iii) For every a ∈ G, (a−1)−1 = a.
(iv) For all a, b ∈ G, (a.b)−1 = b−1.a−1

Proof.

First, we assume that e & e′ are two identities of G.

For every a ∈ G, e.a = a. So, e.e′ = e′, assuming e as an identity element.

Similarly, for every b ∈ G, b.e′ = b. So, e.e′ = e, assuming e′ as an identity
element.
Thus, we have e′ = e.e′ = e, i.e., e = e′.

�
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Group Theory

Some Preliminary Lemmas

Lemma

Let (G, ◦) be a group and c ∈ G s/t c2 = c. Then c = e, where e is the
identity element of G.

Proof.

∵ c2 = c
∴ c.c = c

⇒ c−1.(c.c) = c−1.c
⇒ (c−1.c).c = e

⇒ e.c = e

Thus, c = e. �

Replace c by x.x−1
` , you get x` is the right inverse of x
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Group Theory

Group

Cancellation Law
Let (G, ◦) be a group. Then for each triplet x, y, z ∈ G

(i) x ◦ y = x ◦ z⇒ y = z (left cancellation law)
(ii) y ◦ x = z ◦ x⇒ y = z (right cancellation law)
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Group Theory Subgroups

Subgroup

Definition
A subset H of a group G is said to be a subgroup of G if H itself forms
a group under the restricted binary operation in G.

Lemma
A non-empty subset H of the group G is a subgroup of G iff

(i) a, b ∈ H ⇒ a.b ∈ H;

(ii) a ∈ H ⇒ a−1 ∈ H.
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Group Theory Subgroups

Subgroup

Lemma

If (φ ,) H ⊂ G & #H < ∞ and H is closed under multiplication, then H ≤ G.

Note: The lemma may not be true if H is not finite. (N,+) and (N, ·)
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Group Theory Subgroups

Subgroup

Example
1 (Z,+) ≤ (R,+)

2 (Q∗, ·) ≤ (R∗, ·)

3 Let G =
(

a b
c d

)
, where a, b, c, d ∈ R and ad − bc , 0. G is a group

under matrix multiplication.

H =
(

1 b
0 1

)
, and b ∈ R. Then H ≤ G.
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Group Theory Subgroups

Subgroup

Proposition
Let (G, ·) be a group and T be a non-void subset of G. Then the
following are equivalent:

(i) T ≤ G

(ii) For each x, y ∈ T , x · y & x−1 ∈ T

(iii) For each x, y ∈ T , x · y−1 ∈ T
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Group Theory Subgroups

Subgroup

Definition
Let G be a group and S ,T ⊂ G. We then define

S · T =
{

z ∈ G | z = x.y for x ∈ S , & y ∈ T
φ, if either S or T = φ

S −1 =

{
z ∈ G, z−1 ∈ S

φ, if S = φ
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Group Theory Subgroups

Subgroup

Proposition

Let G be a group and T be a non-void subset of G. Then the following are equivalent:

(i) T ≤ G

(ii) T · T ⊂ T & T−1 ⊂ T

(iii) T · T−1 ⊂ T

Exercise

Let G be a group and H & K ≤ G. Then H · K is a subgroup of G iff H · K = K · H.

Exercise

Let {Tα, α ∈ λ} be a collection of subgroups of G. Then
⋂
{Tα, α ∈ λ} is also a subgroup

of G.
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Group Theory Subgroups

Subgroup Generated by a Subset

Let G be a group and S be a subset of G. Then there is a smallest1 subgroup
T of G containing S . Then T is said to be generated by S and is denoted by
〈S 〉.

Theorem
Let G be a group and S be a non-void subset of G. Then 〈S 〉 consists of all
finite product of the form

x1.x2. . . . xn, for n ∈ N & xi ∈ S ∪ S −1.

Theorem
If G is an abelian group and (φ ,)S ⊂ G, then 〈S 〉 consists of all elements of
the form xr1

1 .x
r2
2 . . . . .x

rk
k , xi , x j, ri ∈ Z.

1T is the smallest in the following sense:
if H is a subgroup and S ⊂ H then T ⊂ H
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Group Theory Cyclic Groups

Cyclic Group

Theorem
Let G be a group and a ∈ G. Then H = {an | n ∈ Z} is a subgroup of G
and is the smallest subgroup of G that contains a.

Definition
1 Let G be a group and a ∈ G. Then the smallest subgroup

H = {an | n ∈ Z} of G which contains a is called the cyclic subgroup
of G generated by a.

2 An element a ∈ G generates G and is a generator for G if 〈a〉 = G.

3 A group G is cyclic if there is some element a ∈ G that generates
G.
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Group Theory Cyclic Groups

Subgroup

Notation:

an under multiplication an =

n−times︷     ︸︸     ︷
a.a. · · · .a

an under addition an = n.a = a + a + · · · + a︸            ︷︷            ︸
n−times

a.b−1 under addition

a − b
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Group Theory Cyclic Groups

Cyclic Group

Definition
1 A group G is finite if |G| or # G is finite. The number of elements in

a finite group is called its order.

2 A group G is cyclic if ∃ α ∈ G s/t for each β ∈ G, ∃ integer i with
β = αi. Such an element α is called a generator of G.

3 Let α ∈ G. The order of α is defined to be the least positive integer
t s/t αt = e, provided that such an integer exists. If such a t does
not exist, then the order of α is defined to be ∞.
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Group Theory Cyclic Groups

Cyclic Subgroup

Example
1 Consider the multiplicative group Z∗19 = {1, 2, · · · , 18} of order 18.

2 Consider the multiplicative group G = (Z∗26, ·) and generate the
above table for G.
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Group Theory Cyclic Groups

Cyclic Group

Theorem

Every subgroup H of a cyclic group G is also cyclic.

In fact, if G is a cyclic group of order n, then for each positive divisor d of n, G contains
exactly one subgroup of order d.

Let 〈a〉 = G.

If H is {e}, then there is nothing to prove. So, we assume H , {e}.

Then ∃ u ∈ H, 3 u , e

We have now 2 cases:

Case-1: G is infinite cyclic group

∃ n0 3 u = an0 .
∵ u ∈ H ⇒ u−1 ∈ H as H ≤ G
Let T = {n ∈ N : n > 0, an ∈ H}
T , φ as n0 or − n0 ∈ T
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Group Theory Cyclic Groups

Cyclic Group

Case-1: G is infinite cyclic group

∵ N is well-ordered,

∴ T has a least element, say k0.
Then ak0 ∈ H and 1 ≤ n < k0, an < H
Again, let M be a cyclic group generated by ak0

Then, ∵ ak0 ∈ H and H is a subgroup, M ⊂ H
Now, let v ∈ H. Then v = am for m ∈ Z

m = qk0 + r, where 0 ≤ r < k0
Now, am ∈ H and aqk0 = (ak0 )q ∈ H
So, am−qk0 ∈ H ⇒ ar ∈ H
By minimal property of ko we must have r = 0. So m = qk0
Then, am = (ak0 )q ∈ M. Then H ⊂ M ⇒ M = H.

Thus, H is a cyclic subgroup generated by ak0 .
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Group Theory Cyclic Groups

Cyclic Group

Case-2: G is finite cyclic group of order m

Then G = {e, a, a2, . . . am−1}.
Let T = {r ∈ N : ar ∈ H, 1 ≤ r ≤ m − 1}
Then T , φ ∵ H , φ.
Let k0 be the minimum value of r, s/t ar ∈ H.
ak0 ∈ H.
Then by above H is cyclic subgroup generated by ak0 .
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Group Theory Cyclic Groups

Cyclic Group

Example
1 (Z,+) and (Zn,+) are cyclic groups

2 (Z × Z,+) is not cyclic group. However, it is finitely generated.
S = {(1, 0), (0, 1)} generates Z × Z

3 (Q,+) & (Q∗, ·) are not finitely generated.
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Group Theory Cyclic Groups

Properties of Generators of Z∗n

(i) Z∗n has a generator iff n = 2, 4, pk or 2pk, where p is an odd prime
and k ≥ 1. In particular, if p is a prime, then Z∗p has a generator.

(ii) If α is a generator of Z∗n, then Z∗n = {α
i mod n : 0 ≤ i ≤ φ(n) − 1}.
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Group Theory Normal Subgroups

Coset

Definition
Let G be a group and H ≤ G. For a, b ∈ G, we say that a is congruent
to b mod H, i.e., a ≡ b mod H if a.b−1 ∈ H.

Lemma
The relation a ≡ b mod H is an equivalence relation.

Definition
If H ≤ G, a ∈ G, then

Ha = {ha | h ∈ H} [aH = {ah | h ∈ H}].

Ha [aH] is called a right [left] coset of H in G.
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Group Theory Normal Subgroups

Coset

Lemma

If H ≤ G, then

Ha = {x ∈ G | a ≡ x mod H}

Proof.

Let [a] = {x ∈ G | a ≡ x mod H}. First, we prove that Ha ⊂ [a].
If h ∈ H, ha ∈ H. Now we see a(ha)−1 = a(a−1h−1) = h−1 ∈ H, ∵ H ≤ G.
By definition of congruence, ha ∈ [a] for every h ∈ H and so Ha ⊂ [a].

Next we assume that x ∈ [a]. Thus ax−1 ∈ H, so (ax−1)−1 = xa−1 ∈ H, i.e., xa−1 = h for
some h ∈ H.
(xa−1)a = ha⇒ x = ha.
Thus, [a] ⊂ Ha.

Thus, we have [a] = Ha. �

Thus, any 2 right cosets of H in G are either identical or have no element in common.
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If h ∈ H, ha ∈ H. Now we see a(ha)−1 = a(a−1h−1) = h−1 ∈ H, ∵ H ≤ G.
By definition of congruence, ha ∈ [a] for every h ∈ H and so Ha ⊂ [a].

Next we assume that x ∈ [a]. Thus ax−1 ∈ H, so (ax−1)−1 = xa−1 ∈ H, i.e., xa−1 = h for
some h ∈ H.
(xa−1)a = ha⇒ x = ha.
Thus, [a] ⊂ Ha.

Thus, we have [a] = Ha.

�

Thus, any 2 right cosets of H in G are either identical or have no element in common.
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Group Theory Normal Subgroups

Coset

Exercise
Prove that there exists a bijection f : aH → Hb and hence there exists
a bijection from aH ↔ bH, for any a, b ∈ G.

Solution
Hint:

f : aH → Hb given by u 7→ a−1ub

Prove that f is injective as well as onto.

By taking b = e, there is a bijection fa : aH → H.
So, there is a bijection fb : bH → H.
Then f −1

b ◦ fa : aH → bH is a bijection.
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Group Theory Normal Subgroups

Coset

Proposition

Let G be a group and H ≤ G & a, b ∈ G. The following are equivalent:

(i) a.H = b.H
(ii) a−1b ∈ H [ or b−1a ∈ H]
(iii) a ∈ b.H [or b ∈ a.H]

Proof.

Hint:

(i)⇒ (ii)
b ∈ bH = aH. So, ∃ h ∈ H 3 b = ah

(ii)⇒ (iii)
b−1a ∈ H ⇒ ∃ h ∈ H 3 b−1a = h

(iii)⇒ (i)
∵ a ∈ bH ∴ a = bh0, for some h0 ∈ H. Now, PT aH ⊂ bH & bH ⊂ aH

�
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Group Theory Normal Subgroups

Coset

Theorem
Let G be a group and H ≤ G. For each a ∈ G,

(i) a ∈ aH
(ii) For any pair a, b ∈ G, either aH = bH or aH ∩ bH = φ
(iii)

⋃
{aH 3 a ∈ G} = G

(iv) {aH 3 a ∈ G} is a partition of G.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 38 / 144



Group Theory Normal Subgroups

Coset

Theorem

Lagrange’s Theorem: If G is a finite group & H ≤ G , then

#H | #G [or ◦ (H) | ◦(G)]

Hence, if a ∈ G, the order of a divides #G.

Proof.

Let x1H, x2H, . . . be the set of distinct left cosets of H in G⋃k
i=1 xiH = G and xiH ∩ x jH = φ for i , j

∵ |xiH| = |H| = m (say)

∴ |G| =
∑k

i=1 |xiH| =
∑k

i=1 m = mk = n (say)

#H | #G �
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Group Theory Normal Subgroups

Subgroup

Corollary
1 Let (G, ·) be a finite group of order p, where p is a prime. Then G is

cyclic and hence abelian.

2 Let (G, ·) be a finite group and g ∈ G be an arbitrary element. Then
order of g is a divisor of order of G.

3 Let p be a prime number and gcd(a, p) = 1, where a ∈ N. Then
ap−1 ≡ 1 mod p.

4 Let p be prime. Then (p − 1)! ≡ −1 mod p.
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Group Theory Normal Subgroups

Subgroup
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Group Theory Homomorphism

Homomorphism

Definition
Let (G1, ·) and (G2, ·) be groups and f : G1 → G2 be a function.
Then

1 f is said to be a homomorphism iff for each a, b ∈ G1,

f (a.b) = f (a). f (b).

2 A homomorphism f is said to be monomorphism
(epimorphism) iff f is injective (surjective).

3 A homomorphism f is said to be isomorphism iff f is both
monomorphism and an epimorphism.
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Group Theory Homomorphism

Homomorphism

Definition
4 A homomorphism f is said to be endomorphism if G1 = G2.

5 An isomorphism f is said to be automorphism if G1 = G2.

6 Two groups G1,G2 are called homomorphic [isomorphic], if there
exists an homomorphism [isomorphism] from G1 to G2.

If G1 & G2 are isomorphic, then we denote G1 ≈ G2.

One can also use the following notation for isomorphic group

G1 w G2, or G1 � G2, or G1 u G2
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Group Theory Homomorphism

Homomorphism

Proposition

Let G1,G2,G3 be groups and f : G1 → G2 & g : G2 → G3 be homomorphisms.

Then g ◦ f : G1 → G3 is also a homomorphism.

Further, g ◦ f is a monomorphism (epimorphism) if g & f are both injective
(surjrctive).

Thus, in particular if f & g are isomorphisms, so is g ◦ f .

Also, if f is isomorphism from G1 → G2, then f −1 : G2 → G1 is also an
isomorphism.

Note: Let C be collections of groups. Define G1 ∼ G2 (Gi ∈ C) iff ∃ an isomorphism
f : G1 → G2. Verify that ∼ is an equivalence relation.

Two isomorphic groups are absolutely indistinguishable. The main problem of group
theory is to decide whether to given groups are isomorphic or not
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Group Theory Homomorphism

Homomorphism

Exercise

Let P be the set of all polynomials with integer coefficient. Then (P,+) is a abelian
group. Show that (P,+) is isomorphic to (Q∗, ·). [(P,+) ≈ (Q∗, ·)]
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Group Theory Homomorphism

Normal Subgroup

Definition
If H ≤ G, the index of H in G is the number of distinct right (or left) cosets of H
in G.

We denote it by iG(H). In case G is a finite group,

iG(H) =
◦(G)
◦(H)

.

Definition
Let G be a group and H be a subgroup of G. Then H is said to be a normal [or
invariant] subgroup of G iff for each x ∈ G, xH = Hx. [H E G]

A subgroup H is a normal subgroup of G if ∀g ∈ G and h ∈ H, ghg−1 ∈ H.

If G is abelian, then every subgroup is normal.
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Group Theory Homomorphism

Normal Subgroup

If G is non-abelian, it may happen that aH , Ha for some a ∈ G.

Consider the group (S 3, ◦)

ρ0 =

(
1 2 3
1 2 3

)
, ρ1 =

(
1 2 3
2 3 1

)
, ρ2 =

(
1 2 3
3 1 2

)
,

µ1 =

(
1 2 3
1 3 2

)
, µ2 =

(
1 2 3
3 2 1

)
, µ3 =

(
1 2 3
2 1 3

)
.

Let

H =
{
ρ0 =

(
1 2 3
1 2 3

)
, µ3 =

(
1 2 3
2 1 3

) }
& a = µ1 =

(
1 2 3
1 3 2

)
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Group Theory Homomorphism

Quotient Group

Theorem
Let G be a group and H be a normal subgroup of G. Then the G/H of left
cosets of H in G is a group under operation of set product.

Proof.
Hint:

Let xH & yH ∈ G/H. Prove that (xH)(yH) ∈ G/H

The element H = eH is the identity element of G/H

Prove that x−1H is the inverse of xH

�

Definition
The G/H is called the quotient group of G by the normal subgroup H.
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Group Theory Homomorphism

Quotient Group

Exercise
Let (Z,+) be the additive group of integers. Any subgroup of Z is of the
form

nZ for n ∈ Z+. Then nZ is a normal subgroup.

Show that (Z/nZ,+) = (Zn,+).

Proposition
Let (G1, ·), (G2, ·) be two groups and f : G1 → G2 be a homomorphism.
Then

(i) f (e1) = e2, where e1, e2 are the identities of G1,G2 respectively.
(ii) for each x ∈ G1, f (x−1) = ( f (x))−1

(iii) ∀a ∈ G, n ∈ Z, f (an) = f (a)n

(iv) if T ≤ G1, f (T ) ≤ G2
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Show that (Z/nZ,+) = (Zn,+).

Proposition
Let (G1, ·), (G2, ·) be two groups and f : G1 → G2 be a homomorphism.
Then

(i) f (e1) = e2, where e1, e2 are the identities of G1,G2 respectively.

(ii) for each x ∈ G1, f (x−1) = ( f (x))−1

(iii) ∀a ∈ G, n ∈ Z, f (an) = f (a)n

(iv) if T ≤ G1, f (T ) ≤ G2
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Group Theory Homomorphism

Detailed Study of Cyclic Group

Theorem

Let (G, ·) be a cyclic groupa. Then

(i) (G, ·) � (Z,+) iff G is infinite
(ii) (G, ·) � (Zn,+) iff G is finite and |G| = n.

aThis is the complete characterization theorem for cyclic group

Proof.

Let G be a cylic group generated by a. Then G = {an : n ∈ Z}. Then two cases can
arise

Case-1: an , am for n , m
Consider the function f : (Z,+)→ (G, ·) given by m 7→ am

Case-2: ∃ n,m ∈ Z 3 an = am

Consider the function f : (Zn,+)→ (G, ·) given by m̄ 7→ am̄

�
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Group Theory Homomorphism

Cyclic Group

Exercise
1 Let G be a group.

(a) If the order of a ∈ G is t, then the order of ak is t
gcd(t, k) .

(b) If G is a cyclic group of order n & d | n, then G has exactly φ(d)
elements of order d. In particular, G has φ(n) generators.

2 Let G1,G2 be cyclic group of order m, n respectively and
gcd(m, n) = 1. Then G1 ×G2 is a cyclic group of order mn.

If gcd(m, n) , 1, G1 ×G2 is never cyclic.
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Group Theory Homomorphism

First Isomorphism Theorem

Theorem
Let G1 & G2 be two groups and f : G1 → G2 be a homomorphism.

Let K = {x ∈ G1 : f (x) = e2} denote the kernel of f

Then,

(i) K E G1

(ii) The quotient group G1/K is isomorphic to image of
f = f (G1) (⊂ G2) under the following map

f̃ : G1/K → G2 defined by f̃ (xK) = f (x)

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 52 / 144



Group Theory Homomorphism

First Isomorphism Theorem

Proof
Hint:

First prove K ≤ G1

Prove K E G1

Prove f̃ is well defined, 1-1 and onto

Prove f̃ is homomorphism
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Group Theory Homomorphism

Second Isomorphism Theorem

Theorem
Let (G, ·) be a group and H & K ≤ G of which K E G.

Then,

(i) H.K ≤ G

(ii) H ∩ K E H.

(iii) H.K/K � H/H ∩ K
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Group Theory Homomorphism

Second Isomorphism Theorem

Proof
Hint:

First prove H.K ≤ G

Then prove H ∩ K E H.

Notice that K E HK

Prove that f : H → HK/K defined as

h 7→ hK,

is isomorphic
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Group Theory Homomorphism

Third Isomorphism Theorem

Theorem
Let (G, ·) be a group and H & K E G s/t K ⊂ H.

Then the quotients groups G/K,G/H, and H/K are defined and H/K is
a normal subgroup of G/K and further

G/H � (G/K)/(H/K)
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Group Theory Homomorphism

Exercises

1 Prove that
R∗/{−1, 1} ≈ R+

2 Let G = GLn(R) be the group of n × n non-singular matrices over R.
Consider its subgroup H = S Ln(R) = {A ∈ GLn(R) 3 det(A) = 1}.
Prove that

G/H ≈ R∗

3 Let G = Z, H = 6Z, K = 8Z. Using Second Isomorphism Theorem,
prove that

2Z/6Z ≈ 8Z/24Z
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Rings and Fields

Outline

1 Group Theory
Subgroups
Cyclic Groups
Normal Subgroups
Homomorphism

2 Rings and Fields
Ideals and Quotient Rings
Euclidean Rings
Polynomial Rings

3 Vector Spaces

4 Extension Fields
Finite Fields
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Rings and Fields

Rings

Definition
A ring (R,+, ·) is a set R with 2 binary operations addition + and
multiplication · defined on R s/t the following conditions are satisfied:

(i) (R,+) is an abelian group
(ii) multiplication · is associative
(iii) For all a, b, c ∈ R the left distributive law

a.(b + c) = (a.b) + (a.c)

and right distributive law

(a + b).c = (a.c) + (b.c) hold
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Rings and Fields

Rings

Definition
1 If a ring R contains the identity element 1 w.r.t. to multiplication,

i.e., 1.a = a.1 = a ∀ a ∈ R, then we shall describe R as a ring with
unit element or ring with identity.

2 If the multiplication · is commutative on R, i.e., a.b = b.a ∀ a, b ∈ R,
then we call R is a commutative ring.

3 If R satisfied both the above conditions, the we say R is a
commutative ring with identity.
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Rings and Fields

Rings

Example

1 R = (Z,+, ·) – the set of integers under the usual rules of addition and
multiplication forms a ring. R is commutative ring with identitya.

2 R is the set of even integers under the usual rules of addition and multiplication
forms a ring. R is commutative ring but has no identity element.

3 For n ≥ 1, the set Zn under modular addition and modular multiplication forms a
ring.

(a) For n = 6, the set Z6 under modular addition and modular
multiplication forms a ring.

(b) For n = 7, the set Z7 under modular addition and modular
multiplication forms a ring.

aHilbert first introduced the term ring
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Rings and Fields

Rings

Example
4 The set Q of rational numbers under the usual rules of addition

and multiplication forms a ring.

5 The set R of real numbers under the usual rules of addition and
multiplication forms a ring.

6 The set C of complex numbers under the usual rules of addition
and multiplication forms a ring.

7 Let Mn(R) be the collection of all n × n matrices having elements of
R. Then Mn(R) forms a non-commutative ring with matrix addition
and matrix multiplication

(a) Mn(Z),Mn(Q),Mn(R), & Mn(C) form rings under matrix addition and
matrix multiplication
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Rings and Fields

Rings

Example (Ring of Quaternions)

Let Q be the set of all symbols of the form α0 + α1.i + α2. j + α3.k, where all αi ∈ R and

i2 = j2 = k2 = −1, i j = − ji = k, jk = −k j = i, ki = −ik = j.

Let α, β ∈ Q and α = α0 + α1.i + α2. j + α3.k and β = β0 + β1.i + β2. j + β3.k.

We define

α = β ⇐⇒ αi = βi f or i = 0, 1, 2, 3.

α + β = (α0 + β0) + (α1 + β1).i + (α2 + β2). j + (α3 + β3).k

α.β = (α0β0 − α1β1 − α2β2 − α3β3) + (α0β1 + α1β0 + α2β3 − α3β2)i+
(α0β2 − α1β3 + α2β0 + α3β1) j + (α0β3 + α1β2 − α2β1 + α3β0)k

Q forms a non-commutative ring under the operations defined above.
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Rings and Fields

Rings

Definition
1 If R is a commutative ring and a(, 0) ∈ R, then a is said to be a

zero-divisor, if ∃ b ∈ R and b , 0 s/t a.b = 0.

For example in Z6, 2, 3, 4 are zero-divisors.

2 A commutative ring is an integral domain if it has no zero-divisors.

For example, Z,Q,R & Z7 are integral domains.

3 A ring is said to be a division ring (or skew field) if its non-zero
elements form a group under multiplication.

For example, Q,R,C and ring of quaternions Q are division rings
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Rings and Fields

Rings & Fields

Definition
The characteristic of an integral domain R is defined as the smallest
positive integer m s/t m.a = 0 for all a ∈ R.

The characteristic of an integral domain R is defined 0, if we don’t have
such m.

Definition

A field is a commutative division ring.

A field (F,+, ·) satisfies the following conditions:

(i) (F,+) is an abelian group
(ii) (F \ {0}, ·) is also an abelian group
(iii) For all a, b, c ∈ F the distributive law

a.(b + c) = (a.b) + (a.c) hold
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Rings and Fields

Rings

Lemma
If R is a ring, then for all a, b ∈ R

(i) a.0 = 0.a = 0
(ii) a(−b) = (−a)b = −(ab)
(iii) (−a)(−b) = ab

If, in addition, R has an identity element 1, then
(iv) (−1)a = −a
(v) (−1)(−1) = 1
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Rings and Fields

Rings & Fields

Lemma
A finite integral domain is a field.
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Rings and Fields

Rings & Fields

Lemma
A finite integral domain is a field.
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Rings and Fields

Rings & Fields

Corollary
If p is a prime number, then Zp is a field.

Note: Zn never forms a field if n is composite

Exercise
If D is an integral domain and D is of finite characteristic, prove that the
characteristic of D is a prime number.
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Rings and Fields

Rings

Example

Let R be a ring and x be an indeterminate. The polynomial ring R[x] is defined to be
the set of all formal sums an xn + an−1 xn−1 + . . . + a1 x + a0 =

∑n
i=0 ai xi, where ai ∈ R are

called the coefficients of xi for 0 ≤ i ≤ n.

Given two polynomials f (x) =
∑n

i=0 ai xi & g(x) =
∑m

i=0 bi xi ∈ R[x]

f (x) + g(x) =
n∑

i=0

(ai + bi)xi,

where we have implicitly assumed that m ≤ n and we set bi = 0, for i > m and

f (x).g(x) =
m+n∑
i=0

 i∑
j=0

ai− jb j xi


R[x] becomes a ring, with 0 given as the polynomial with zero coefficients.
If R has identity, 1 , 0 then R[x] has identity, 1 , 0, 1 is the polynomial whose constant
coefficient is 1 and other terms are 0.
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Rings and Fields

Rings

Example

Solve x2 − 5x + 6 = 0 in Z12.

Exercise

1. Find all the solution of the equation x2 + 2x + 4 = 0 in Z6
2. Solve the equation 3x = 2 in Z23
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Rings and Fields

Modular Equation ax ≡ b mod m

Theorem

Let m ∈ N and a ∈ Zm s/t gcd(a,m) = 1. For each b ∈ Zm, the equation ax = b has unique
solution in Zm.

Theorem

Let m ∈ N and a, b ∈ Zm. Let d = gcd(a,m). The equation ax = b has a solution in Zm iff
d | b. When d | b, the equation has exactly d solutions in Zm.

Proof.

Let s ∈ Zm be a solution of the equation ax = b in Zm

as − b = qm
b = as − qm, and
d | (as − qm)

Thus, a solution s can exist only if d | b

�
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Modular Equation ax ≡ b mod m

Theorem

Let m ∈ N and a, b ∈ Zm. Let d = gcd(a,m). The equation ax = b has a solution in Zm iff
d | b. When d | b, the equation has exactly d solutions in Zm.

Proof.

Suppose d | b,⇒ b = b1d

∵ gcd(a,m) = d, ∴ a = a1d & m = m1d

Then the equation ax = b in Zm can be written as ax − b = qm in Z

ax − b = qm⇒ d(a1 x − b1) = dqm1

Now, m | (ax − b) ⇐⇒ m1 | (a1 x − b1)

Thus the solution s of ax = b in Zm are precisely the solution of a1 x = b1 in Zm1

Now, s ∈ Zm1 is the ! solution of a1 x = b1 in Zm1

The numbers ∈ Zm that reduces to s mod m1

s, s + m1, s + 2m1, . . . , s + (d − 1)m1

Thus, there are exactly d solutions of the equation in Zm.

�
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Rings and Fields

Ring (Z26,+, ·) in Affine Cipher

An affine cipher :

fa,b : Z26 → Z26

pi 7→ (a.pi + b) mod 26.

Example
Encrypt COLLEGE using a = 5 and b = 4

Convert C O L L E G E in numeric form

2 14 11 11 4 6 4

Apply the affine function 14 22 7 7 24 8 24
Cipher text is OWHHYIY
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Rings and Fields

Rings

Theorem
In the ring Zn, the zero-divisors are precisely those non-zero elements
that are not relatively prime to n.

Corollary
If p is prime, then Zp has no zero-divisor.

Theorem
The cancellation laws holds in a ring R iff R has no zero-divisor.
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Rings and Fields

Homomorphism

Definition
A mapping φ from the ring R into the ring R′ is said to be a
homomorphism if

(i) φ(a + b) = φ(a) + φ(b)
(ii) φ(a.b) = φ(a).φ(b)

Definition
A mapping φ from the ring R into the ring R′ is said to be a
isomorphism if φ is a homomorphism as well as one-to-one and onto.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 75 / 144



Rings and Fields

Homomorphism

Lemma
lf φ is a homomorphism of R into R′, then

(i) φ(0) = 0
(ii) φ(−a) = −φ(a) ∀ a ∈ R

Definition
If φ is a homomorphism of R into R′ then the kernel of phi, I(φ), is the
set of all elements a ∈ R s/t φ(a) = 0, the zero-element of R′.
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Rings and Fields

Homomorphism

Lemma

If φ is a homomorphism of R into R′ with kernel I(φ), then

(i) I(φ) is a subgroup of R under addition.
(ii) If a ∈ I(φ) and r ∈ R then both a.r, r.a ∈ I(φ).

Example

Let J(
√

2) be all real numbers of the form m + n
√

2 where m, n ∈ Z; J(
√

2) forms a ring
under the usual addition andmultiplication of real numbers. (Verify!)

Define φ : J(
√

2)→ J(
√

2) by

φ(m + n
√

2) = m − n
√

2.

φ is a homomorphism of J(
√

2) onto J(
√

2) and its kernel I(φ), consists only of 0.
(Verify!)
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Rings and Fields Ideals and Quotient Rings

Ideals and Quotient Rings

Definition
A non-empty subset I of R is said to be a (two-sided) ideal of R if

(i) I is a subgroup of R under addition.
(ii) For every u ∈ I and r ∈ R, both ur, & ru ∈ I.
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Rings and Fields Ideals and Quotient Rings

Ideals and Quotient Rings

Lemma

If I is an ideal of the ring R, then R/I is a ring and is a homomorphic image of R.

Proof.

Hint:

R/I is the set of all the distinct cosets of I in R

R/I consists of all the cosets a + I, where a ∈ R.

R/I is automatically a group under addition (a + I) + (b + I) = (a + b) + I.

Define the multiplication in R/I as (a + I)(b + I) = ab + I

Define homomorphism φ : R→ R/I by φ(a) = a + I for every a ∈ R.

Prove that kernel of φ is exactly I.

�

If R is commutative then so is R/I. If R has the identity element 1, then R/I has the
identity 1 + I
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Rings and Fields Ideals and Quotient Rings

Ideals and Quotient Rings

Theorem
Let R,R′ be rings and φ be a homomorphism of R onto R′ with kernel I.
Then R′ is isomorphic to R/I.

Moreover, there is a one-to-one correspondence between the set of
ideals of R′ and the set of ideals of R which contain I.

This correspondence can be achieved by associating with an ideal I′ in
R′ the ideal I in R defined by I = {x ∈ R | φ(x) ∈ I′}.

R/I ≈ R′/I.′
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Rings and Fields Ideals and Quotient Rings

Ideals and Quotient Rings

Lemma
Let R be a commutative ring with identity whose only ideals are (0) and
R itself. Then R is a field.

Proof.

Suppose that a , 0 is in R. Consider the set Ra = {xa | x ∈ R}.

Claim: Ra is an ideal of R.

Ra is an additive subgroup of R.

If r ∈ R, u ∈ Ra, ru = r(r1a) = (rr1)a ∈ Ra. Ra is an ideal of R.

Ra = (0) or Ra = R. ∵ 0 , a = 1a ∈ Ra, Ra , (0); thus, we have Ra = R.

∵ 1 ∈ R so, it can be realized as a multiple of a; ∃ b ∈ R s/t ba = 1.

�
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Lemma
Let R be a commutative ring with identity whose only ideals are (0) and
R itself. Then R is a field.

Proof.

Suppose that a , 0 is in R. Consider the set Ra = {xa | x ∈ R}.
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Ideals and Quotient Rings

Definition
An ideal M , R in a ring R is said to be a maximal ideal of R if
whenever U is an ideal of R s/t M ⊂ U ⊂ R,then either R = U or M = U.

Exercise
Let R = Z be the ring of integers, and let U be an ideal of R.
[∵ U ≤ R we know that U = n0Z ; we write this as U = (n0).]
What values of n0 lead to maximal ideals?
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Ideals and Quotient Rings

Solution
First, we assume p is prime⇒ P = (p) is a maximal ideal of R.

If U is an ideal of R and P ⊂ U, then U = (n0) for some integer n0

∵ p ∈ P ⊂ U, p = mn0 for some m ∈ Z
∵ p is a prime⇒ n0 = 1 or n0 = p

If n0 = p, then P ⊂ U = (n0) ⊂ P,⇒ U = P

If n0 = 1,then 1 ∈ U, hence r = 1r ∈ U∀ r ∈ R whence U = R

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 83 / 144



Rings and Fields Ideals and Quotient Rings

Ideals and Quotient Rings

Solution
Now, we assume M = (n0) is a maximal ideal of R⇒ n0 must be
prime.

Claim: n0 must be a prime

If n0 = ab, where a, b ∈ N, then U = (a) ⊃ M, hence U = R or U = M.

If U = R, then a = 1⇒ n0 is prime

If U = M, then a ∈ M and so a = rn0 for some integer r,
∵ every element of M is a multiple of n0

But then n0 = ab = rn0b,⇒ rb = 1, so that b = 1, n0 = a.
Thus, n0 is a prime number.
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Example (Maximal Ideal)
Let R be the ring of all the real-valued, continuous functions on the
closed unit interval [0, 1].

Let

M = { f (x) ∈ R | f (1/2) = 0}.

M is certainly an ideal of R. Moreover, it is a maximal ideal of R.
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Theorem
If R is a commutative ring with identity and M is an ideal of R, then M is
a maximal ideal of R ⇐⇒ R/M is a field.

Proof.
Suppose, first, R/M is a field.

∵ R/M is a field its only ideals are (0) and R/M itself.
There is a one-to-one correspondence between the set of ideals of
R/M and the set of ideals of R which contain M.
The ideal M of R corresponds to the ideal (0) of R/M whereas the
ideal R of R corresponds to the ideal R/M of R/M in this one-to-one
mapping.
Thus there is no ideal between M and R other than these two,
whence M is a maximal ideal.

�
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Proof.
Now, assume that M is a maximal ideal of R

∵ M is a maximal ideal of R, R/M has only (0) and itself as ideals.

Furthermore R/M is commutative with identity element since R
enjoys both these properties.

By the lemma ??, we can say that R/M is a field.
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The Field of Quotients of an ID

Definition
A ring R can be imbedded in a ring R′ if there is an isomorphisma of R
into R′.

R′ will be called an over-ring or extension of R if R can be imbedded
in R′.

aIf R & R′ have identity element, then this isomorphism takes 1 onto 1’.

Let D be our integral domain. Let a/b denotes all quotients where
a, b ∈ D and b , 0

Define:
a
b =

c
d ⇐⇒ ad = bc

a
b +

c
d =

ad+bc
bd(

a
b

) (
c
d

)
= ac

bd
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The Field of Quotients of an ID

M = {(a, b) | a, b ∈ D & b , 0}
Define a relation onM as follows:

(a, b) ∼ (c, d) ⇐⇒ ad = bc.

Prove that ∼ is an equivalence relation onM
Let [a, b] be the equivalence class inM of (a, b).
Let F be the set of all such equivalence classes [a, b] where
a, b ∈ D and b , 0.
Prove that F is a field where

[a, b]−1 = [b, a], ∵ a , 0
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The Field of Quotients of an ID

Theorem
Every integral domain can be imbedded in a field.
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Euclidean Rings

Definition
An integral domain R is said to be a Euclidean ring if for every a , 0 in
R there is defined a non-negative integer d(a) s/t

(i) ∀ a, b ∈ R, both non-zero, d(a) ≤ d(ab).

(ii) For any a, b ∈ R, both non-zero, ∃ q, r ∈ R s/t a = qb+ r where either
r = 0 or d(r) < d(b).

Note:

We do not assign a value to d(0).

d(a) = |a| acts as the required function.
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Euclidean Rings

Theorem

Let R be a Euclidean ring and let A be an ideal of R. Then ∃ a0 ∈ A s/t A consists
exactly of all a0 x as x ranges over R.

Proof.

If A just consists of the element 0, put a0 = 0

Thus, we assume that there is an a , 0 in A.

Pick an a0 ∈ A s/t d(ao) is minimal.

∵ a ∈ A, by the properties of Euclidean rings there exist q, r ∈ R s/t a = qa0 + r
where r = 0 or d(r) < d(a0).

∵ a0 ∈ A and A is an ideal of R, qa0 ∈ A.
⇒ a − qa0 ∈ A; but r = a − qa0, whence r ∈ A.

If r , 0 then d(r) < d(a0), giving us an element r ∈ A whose d-value is smaller
than that of a0, in contradiction to our choice of a0 ∈ A of minimal d-value.

�
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Rings and Fields Euclidean Rings

Euclidean Rings

Definition
An integral domain R with identity is a principal ideal ring if every
ideal A in R is of the form A = (a) for some a ∈ R, where the notation
(a) = {xa | x ∈ R} to represent the ideal of all multiples of a.

Exercise
A Euclidean ring possesses the identity element.

Definition
If a , 0 and b are in a commutative ring R then a is said to divide b if ∃
a c ∈ R s/t b = ac. We shall use the symbol a | b to represent the fact
that a divides b and a - b to mean that a does not divide b.
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Euclidean Rings

Definition
If a, b ∈ R then d ∈ R is said to be a greatest common divisor of a and b
if

(i) d | a & d | b.

(ii) Whenever c | a and c | b then c | d.

Lemma
Let R be a Euclidean ring. Then any two elements a & b ∈ R have a
greatest common divisor d.

Moreover d = λa + µb for some λ, µ ∈ R.
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Euclidean Rings

Proof.
Let A = {ra + sb : r, s ∈ R}

Prove that A is an ideal of R.

Since A is an ideal of R, ∴ A is principle ideal ring.
∃ d ∈ A s/t every element in A is a multiple of d.
∵ R is a Euclidean ring, R contains identity.
Thus, a = 1.a + 0.b ∈ A, b = 0.a + 1.b ∈ A

They are both multiples of d, whence d | a & d | b.
Finally, suppose that c | a & c | b; then c | λa + µb = d.

�

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 96 / 144



Rings and Fields Euclidean Rings

Euclidean Rings

Proof.
Let A = {ra + sb : r, s ∈ R}

Prove that A is an ideal of R.
Since A is an ideal of R, ∴ A is principle ideal ring.
∃ d ∈ A s/t every element in A is a multiple of d.
∵ R is a Euclidean ring, R contains identity.
Thus, a = 1.a + 0.b ∈ A, b = 0.a + 1.b ∈ A

They are both multiples of d, whence d | a & d | b.
Finally, suppose that c | a & c | b; then c | λa + µb = d.

�

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 96 / 144



Rings and Fields Euclidean Rings

Euclidean Rings

Definition
Let R be a commutative ring with identity. An element a ∈ R is a unit in
R if ∃ an element b ∈ R s/t ab = 1.

Do not confuse a unit with a unit element. A unit in a ring is an
element whose inverse is also in the ring.

Exercise
Let R be an integral domain with identity and suppose that for a, b ∈ R
both a | b, & b | a. Then a = ub, where u is a unit in R.

Definition
Let R be a commutative ring with identity. Two elements a & b ∈ R are
said to be associates if b = ua for some unit u ∈ R.
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Rings and Fields Euclidean Rings

Euclidean Rings

Definition
In the Euclidean ring R a nonunit π is said to be a prime element of R if
whenever π = ab, where a, b ∈ R,then one of a or b is a unit in R.

Lemma
Let R be a Euclidean ring. Then every element in R is either a unit in R
or can be written as the product of a finite number of prime elements of
R.

Definition
In the Euclidean ring R, a & b ∈ R are said to be relatively prime if
gcd(a, b) is a unit of R.
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Euclidean Rings

Lemma

Let R be a Euclidean ring. Suppose that for a, b, c ∈ R, a | bc but gcd(a, b) = 1. Then
a | c.

Lemma

If π is a prime element in the Euclidean ring R and π | ab where a, b ∈ R then π divides
at least one of a or b.

Theorem (Unique Factorization Theorem)

Let R be a Euclidean ring and a , 0 a nonunit in R. Suppose that

a = π1π2 . . . πn = π
′
1π
′
2 . . . π

′
m,

where the πi & π′j are prime elements of R. Then n = m and each πi, 1 ≤ i ≤ n is an
associate of some π′j, 1 ≤ j ≤ m and conversely each π′k is an associate of some πq.
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Rings and Fields Euclidean Rings

Euclidean Rings

Every nonzero element in a Euclidean ring R can be uniquely written
(up to associates) as a product of prime elements or is a unit in R.

Lemma
The ideal A = (a0) is a maximal ideal of the Euclidean ring R iff a0 is a
prime element of R.
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Rings and Fields Polynomial Rings

Polynomial Rings

Let F be a field. By the ring of polynomials in the indeterminate, x,
denoted by F[x],

F[x] =
{
a0 + a1x + . . . + anxn, : n ∈ N & ai ∈ F, f or 0 ≤ i ≤ n

}
.

Exercise
F[x] is an integral domain, when F is a field (integral domain)

Theorem
F[x] is a Euclidean ring, when F is a field (Euclidean domain)
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Rings and Fields Polynomial Rings

Polynomial Rings

Lemma
F[x] is a principal ideal ring, when F is a field

Lemma
Given two polynomials f (x), g(x) ∈ F[x] and let d(x) = gcd( f (x), g(x)).
Then d(x) can be expressed as

d(x) = λ(x) f (x) + µ(x)g(x).

Definition
A polynomial p(x) ∈ F[x] is said to be irreducible over F if whenever
p(x) = a(x)b(x) with a(x), b(x) ∈ F[x], then one of a(x) or b(x) has degree
0 (i.e., is a constant).
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Rings and Fields Polynomial Rings

Polynomial Rings

Lemma
Any polynomial in F[x] can be written in a unique manner as a product
of irreducible polynomials in F[x].

Lemma
The ideal A = (p(x)) in F[x] is a maximal ideal iff p(x) is irreducible
over F.

Definition
The polynomial f (x) = a0 + a1x + . . . + anxn, where the a0, a1, a2, . . . , are
integers is said to be primitive if the greatest common divisor of
a0, a1, . . . , an is 1.
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Rings and Fields Polynomial Rings

Polynomial Rings

Definition

The content of the polynomial f (x) = a0 + a1 x + . . . + an xn, where the ai’s are ∈ Z, is the
greatest common divisor of the integers a0, a1, . . . , an.

Theorem

If the primitive polynomial f (x) can be factored as the product of two polynomials
having rational coefficients, it can be factored as the product of two polynomials
having integer coefficients.

Definition

A polynomial is said to be integer monic if all its coefficients are integers and its
highest coefficient is 1.
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Rings and Fields Polynomial Rings

Polynomial Rings

Theorem (THE EISENSTEIN CRITERION)

Let f (x) = a0 + a1x + a2x2 + . . . + anxn be a polynomial with integer
coefficients. Suppose that for some prime number
p, p - an, p | a0, p | a1, p | a2, . . . , p | an−1, p2 - a0. Then f (x) is irreducible
over the rationals.
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Rings and Fields Polynomial Rings

Polynomial Rings

Lemma
If R is an integral domain, then so is R[x].

Definition
An element a which is not a unit in R will be called irreducible (or a
prime elementa) if, whenever a = bc with b, c ∈ R, then one of b or c
must be a unit in R.

ain case of R is a UFD
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Rings and Fields Polynomial Rings

Polynomial Rings

Definition
An integral domain, R, with identity element is a unique factorization
domain (UFD) if any nonzero element in R is either a unit or can be
written as the product of a finite number of irreducible elements of R
and the the decomposition is unique up to the order and associates of
the irreducible elements.

Lemma
If R is a UFD and if a, b ∈ R, then a and b have a greatest common
divisor (a, b) ∈ R.
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Rings and Fields Polynomial Rings

Polynomial Rings

Lemma
lf R is a unique factorization domain, then the product of two primitive
polynomials in R[x] is again a primitive polynomial in R[x].

Lemma
lf R is a unique factorization domain and if p(x) is a primitive polynomial
in R[x], then it can be factored in a unique way as the product of
irreducible elements in R[x].
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Rings and Fields Polynomial Rings

Polynomial Rings

Theorem
If R is a unique factorization domain, then so is R[x].
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Rings and Fields Polynomial Rings

Ring Structure
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Vector Spaces

Outline

1 Group Theory
Subgroups
Cyclic Groups
Normal Subgroups
Homomorphism

2 Rings and Fields
Ideals and Quotient Rings
Euclidean Rings
Polynomial Rings

3 Vector Spaces

4 Extension Fields
Finite Fields
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Vector Spaces

Vector Spaces

Definition
A non-empty set V is said to be a vector space over a field F, is
denoted by (V,+, ·,F) if V is an abelian group under an operation which
we denote by +, and if for every α ∈ F, v ∈ V there is defined an
element, written αv ∈ V subject to

(i) α.(v + w) = α.v + α.w;
(ii) (α + β).v = α.v + β.v;
(iii) α.(β.v) = (α.β).v;
(iv) 1.v = v;

or all α, β ∈ F, v,w ∈ V (where the 1 represents the identity element of F

under multiplication).
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Vector Spaces

Linear Independence and Bases

Definition
If V is a vector space over F and if v1, . . . , vn ∈ V then any element of
the form

α1v1 + α2v2 + . . . + αnvn,

where the αi ∈ F, is a linear combination of v1, . . . , vn over F.

Definition
If S is a nonempty subset of the vector space V, then L(S ), the linear
span of S , is the set of all linear combinations of finite sets of elements
of S .
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Vector Spaces

Linear Independence and Bases

Lemma
L(S ) is a subspace of V.

Definition
If V is a vector space and if v1, . . . , vn are in V, we say that they are
linearly dependent over F if there exist elements λ1, . . . , λn ∈ F, not all
of them 0, s/t

λ1v1 + λ2v2 + . . . + λnvn = 0.

If the vectors v1, . . . , vn are not linearly dependent over F, they are said
to be linearly independent over F.
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Vector Spaces

Linear Independence and Bases

Lemma
If v1, . . . , vn ∈ V are linearly independent, then every element in their
linear span has a ! representation in the form λ1v1 + . . . + λnvn with the
λi ∈ F.

Theorem
If v1, . . . , vn are in V then either they are linearly independent or some
vk is a linear combination of the preceding ones, v1, . . . , vk−1.

Corollary
If V is a finite-dimensional vector space, then it contains a finite set
v1, . . . , vn of linearly independent elements whose linear span is V.
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Vector Spaces

Linear Independence and Bases

Definition
A subset S of a vector space V is called a basis of V if S consists of
linearly independent elementsa and V = L(S ).

aAny finite number of elements in S is linearly independent

Corollary
If V is a finite-dimensional vector space and if u1, . . . , um span V then
some subset of u1, . . . , um forms a basis of V.

Corollary
If V is finite-dimensional over F then any two bases of V have the same
number of elements.
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Vector Spaces

Linear Independence and Bases

Corollary

If V is finite-dimensional over F then V is isomorphic to F(n) for a unique
integer n; in fact, n is the number of elements in any basis of V over F.

Definition
The integer n in the above Corollary ?? is called the dimension of V
over F.
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Extension Fields

Outline

1 Group Theory
Subgroups
Cyclic Groups
Normal Subgroups
Homomorphism

2 Rings and Fields
Ideals and Quotient Rings
Euclidean Rings
Polynomial Rings

3 Vector Spaces

4 Extension Fields
Finite Fields
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Extension Fields

Field Extension

Definition
If K is a subfield of a field M, then M is called an extension of the
field K.

Definition
Let M be an extension of a field K. An element u ∈ M is said to be
algebraic over K if u satisfies a polynomial over K i.e., if elements
c0, c1, . . . , cn not all zero exit in K such that

c0 + c1.u + . . . + cn.un = 0.
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Extension Fields

Field Extension

Definition
An element of M which is not algebraic is said to be transcendental
over K.

Definition
An extension of a field K is called an algebraic extension, if every
member of it, is algebraic over K.

Otherwise if ∃ a single element in the extension which is
transcendental over K, the extension is called a transcendental
extension of K.
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Extension Fields

Extension as a Vector Space

An extension M of a field K can be looked upon as a vector space
over K.

∵ M is a field, ∴ it is already an additive commutative group.
Now the product of an element of K and an element of an element
of M is a product of two elements of M and is therefore an element
of M.
Hence, M is a vector space over K.

Definition
If M is an extension of a field K, then M may be looked upon as a
vector space over K. The dimension of this vector space is called the
degree of the extension, and is denoted by [M : K].
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Extension Fields

Extension as a Vector Space

Theorem (Paul Halmos)

Any finite extension of a field is an algebraic extension of the field.

Proof.

Let M be a finite extension of a field K and [M : K] = n.

Then for any u ∈ M, the (n + 1) elements 1, u, . . . , un must be linearly dependent
over K.

Hence, elements c0, c1, . . . , cn, not all zero exists in K such that

c0.1 + c1.u + · · · + cnun = 0.

This shows that u is an algebraic over K; but u was an arbitrary element of M.

Thus, it is proved that M is an algebraic extension of K.

�
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Extension Fields

Extension as a Vector Space

Exercise

If M is an extension of a field K and [M : K] = 1, show that M = K.
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Extension Fields

Extension as a Vector Space

Theorem (Transitivity of Finite Extensions)

If B,C & D are 3 fields s/t B is a finite extension of C and C is finite extension of D,
then B is finite extension of D, and [B : D] = [B : C] × [C : D].

Proof.

Let [B : C] = m & [C : D] = n. Let {u1, . . . , um} be a basis of B over C and
{v1, . . . , vn} be a basis of C over D.

Then any t ∈ B is of the form t =
∑n

i=1 ciui, for certain elements c1, . . . , cm ∈ C.

∵ c1, . . . , cm ∈ C each of them is a linear combination of {v1, . . . , vn} with coefficient
from D.

Let ci =
∑n

j=1 di jv j, where di j’s ∈ D. But then

t =
m∑

i=1

 n∑
j=1

di jv j

 ui =

m∑
i=1

n∑
j=1

di jv jui

�
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{v1, . . . , vn} be a basis of C over D.

Then any t ∈ B is of the form t =
∑n

i=1 ciui, for certain elements c1, . . . , cm ∈ C.

∵ c1, . . . , cm ∈ C each of them is a linear combination of {v1, . . . , vn} with coefficient
from D.

Let ci =
∑n

j=1 di jv j, where di j’s ∈ D. But then

t =
m∑

i=1

 n∑
j=1

di jv j

 ui =

m∑
i=1

n∑
j=1

di jv jui
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Extension Fields

Extension as a Vector Space

Proof.

This shows that the mn elements v jui generate B over D.

We show that these elements are independent over D. For this, let∑m
i=1

∑n
j=1 di jv jui = 0. This can be written as

∑m
i=1

(∑n
j=1 di jv j

)
ui = 0.

Since u vectors are independent over C we get
∑n

j=1 di jv j = 0, for 1 ≤ i ≤ m.

However, v vectors are independent over D we get di j = 0, for
1 ≤ i ≤ m & 1 ≤ j ≤ n.

Hence, the mn vectors v jui are indeed independent over D showing that these
vectors form a basis of B over D.

Hence, [B : D] = mn and thus [B : D] = [B : C] × [C : D].
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Extension Fields

Extension as a Vector Space

Exercise

If B is a finite extension of a field D and C is a field intermediate between B and D,
show that B is a finite extension of C and C is a finite extension of D.

Corollary

If [B : C] = p, a prime number then there cannot be any field properly in between B
and C.

Exercise

1 If B and C are finite extension of a field D and D ⊂ C ⊂ B, then show that B is a
finite extension of D.

2 If B is a finite extension of a field D and C is a subfield of B then show that [C : D]
divides [B : D]

3 The field of complex numbers C is a finite extension of degree 2 over the real
field R.
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Extension Fields

Adjunction

Let M be an extension of a field K and let G ⊂ M.

Then the intersection of all subfields of M containing K and G is
the smallest subfield of M containing K and G.

This subfield is denoted by K(G) and is called the subfield of M

obtained from K by the adjunction of the subset G or simply ‘K
adjunction G’.

If G is a finite set equal to {a1, . . . , an} then K(G) is also written as
K(a1, . . . , an).
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Extension Fields

Adjunction

Theorem

If M is a finite extension of a field K, then M can be obtained by adjoining a finite
number of elements u1, . . . , um to K so that M = K(u1, . . . , um) where u1, . . . , um are
algebraic over K.

Proof.

∵ M is a finite extension of K each element of M is algebraic over K.

If M = K the theorem is vacuously true.

If M , K then ∃ at least one element u1 ∈ M \ K. If M = K(u1) the theorem is
proved.

If M , K(u1), ∃ at least one element u2 ∈ M \K(u1). If M = K(u1, u2) the theorem is
proved.

If not, we carry on the process and after a finite number of steps we shall arrive
at an extension K(u1, . . . , um) s/t M = K(u1, . . . , um). ∵ at each step we arrive at
proper extension of the previous one and thus an extension ≥ 2; but M is of finite
degree over K.
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Extension Fields

Adjunction

Definition
Let M be an extension of a field K and u be any element of M. Then the field
K(u) obtained from K by adjunction of the single element u is called a simple
extension of K.

The extension is called a simple algebraic extension or a simple
transcendental extension according as u is algebraic or transcendental over
K.

Definition
Let M be an extension of a field K and u ∈ M be algebraic over K. Then the
monic polynomial of the least degree over K satisfied by u is called the
minimal polynomial of u over K.

If f (x) is the minimal polynomial of u over K, then degree of f (x) is also called
the degree of u over K, written as deg(u) over K.
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Extension Fields

Adjunction

Exercise
If p is a prime and Q the rational field, then show that
Q(
√

p) = {a + b
√

p : a, b ∈ Q}

Solution

Let α =
√

p. Then α2 = p i.e., α2 − p = 0.
Thus, α =

√
p satisfies the polynomial x2 − p over Q. But

√
p can’t

satisfy a polynomial of degree < 2 i.e., a polynomial of degree 1
over Q ∵

√
p < Q.

Hence, deg
√

p over Q = 2.
Thus, {1,

√
p} forms a basis of Q(

√
p) over Q.

Hence, any number of Q(
√

p) is of the form a.1 + b.
√

p where
a, b ∈ Q.
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Extension Fields

Adjunction

Exercise
Find the inverse of 5u + 6 as a polynomial in u over the rationals given
that the minimal polynomial of u over the rationals is x2 + 7x − 11.

Solution

We have u2 + 7u − 11 = 0 or u2 = −7u + 11.
Let au + b be the required inverse of 5u + 6.
We must have 1 = (5u + 6)(au + b)

= 5au2 + (6a + 5b)u + 6b
= 5a(−7u + 11) + (6a + 5b)u + 6b
= (−29a + 5b)u + (55a + 6b)

So, we have −29a + 5b = 0 & 55a + 6b = 1

Therefore the required inverse is 5
449 u + 29

449
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Extension Fields

Algebraic Closure

Definition
Let M be an extension of a field K. Then the set E of all elements of M

which are algebraic over K is a subfield of M containing K. This field E

is called the algebraic closure of K in M.

Definition
Let K be any field. Then an algebraic extension K̄ is said to be
algebraic closure iff K̄ is algebrically closed over K.

Note 1: If F is an algebraically closed field, then the algebraic closure of F is F
itself.

Note 2: (Fundamental Theorem of Algebra) The complex field C is
algebraically closed.
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Extension Fields Finite Fields

Finite Fields

Definition
A finite field is a field F which contains a finite number of elements.

Fact
1 If F is a finite field, then F contains pm elements for some prime p

and integer m ≥ 1.
2 For every prime power order pm, there is a ! finite field of order pm.

This field is denoted by Fpm , or sometimes by GF(pm).
3 For m = 1, Fp or GF(p) is a field. If p is a prime then Zp is a field.

Fp � GF(p) � Zp.
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Extension Fields Finite Fields

Finite Fields

Fact
1 Let Fq be a finite field of order q = pm.

(i) Then every subfield of Fq has order pn, for some n which is a
positive divisor of m.

(ii) Conversely, if n is a positive divisor of m, then there is exactly one
subfield of Fq of order pn.

2 The non-zero elements of Fq form a group under multiplication
called the multiplicative group of Fq, denoted by F∗q.

3 F∗q is a cyclic group of order q − 1. Hence aq = a, ∀ a ∈ Fq.

4 A generator of the cyclic group F∗q is called a primitive element or
generator of F∗q.
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Extension Fields Finite Fields

Finite Fields

Subfields of F230 and their relation:
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Extension Fields Finite Fields

Finite Fields

Subfields of Fq36 and their relation:
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Extension Fields Finite Fields

Construction of Finite Field of Order pm

First select an irreducible polynomial f (x) ∈ Zp[x] of degree m.
The ideal < f (x) > is a maximal ideal.
Then Zp[x]/ < f (x) > is a finite field of order pm.
For each m ≥ 1, ∃ a monic irreducible polynomial of degree m over
Zp.

Hence, every finite field has a polynomial basis representation.
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Construction of Finite Field of Order pm

Theorem
The number of monic irreducible polynomials in Fq[x] of degree n is
given by

1
n

∑
d|n

µ(d)qn/d,

where µ is Möbius function.

Definition
The Möbius function µ is the function on N defined by

µ(n) =


1 i f n = 1,
(−1)k i f n is the product o f k distinct primes,
0 i f n is divisible by square o f a prime.
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Construction of Finite Field of Order 24

(i) First consider α is a root of the irreducible polynomial x4 + x + 1
over GF(2)

(ii) α4 + α + 1 = 0⇒ α4 = α + 1

α0 = 1 α1 = α α2 = α2 α3 = α3

α4 = α + 1 α5 = α2 + α α6 = α3 + α2 α7 = α3 + α + 1

α8 = α2 + 1 α9 = α3 + α α10 = α2 + α + 1 α11 = α3 + α2 + α

α12 = α3 + α2 + α + 1 α13 = α3 + α2 + 1 α14 = α3 + 1 α15 = 1

(iii) Now Consider the irreducible polynomial x4 + x3 + x2 + x + 1 or
x4 + x3 + 1 over GF(2).
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Extension Fields Finite Fields

Construction of Finite Field of Order 25

(i) First consider the irreducible polynomial x5 + x4 + x3 + x2 + x + 1

(ii) Next consider the irreducible polynomial x5 + x2 + 1
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Computing Multiplicative Inverses in Fpm

Algorithm

Input: a non-zero polynomial g(x) ∈ Fpm a.

Output: g(x)−1 ∈ Fpm .

1 Use the extended Euclidean algorithm for polynomials to
find 2 polynomials s(x) & t(x) ∈ Zp[x] s/t

s(x)g(x) + t(x) f (x) = 1.

2 Return(s(x)).
aThe elements of the field Fpm are represented as Zp[x]/ < f (x) >, where

f (x) ∈ Zp[x] is an irreducible polynomial of degree m over Zp.
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Finite Fields

Definition
An irreducible polynomial f ∈ Zp[x] of degree m is called a primitive
polynomial if α is a generator of F∗pm , the multiplicative group of all the
non-zero elements in Fpm = Zp[x]/ < f (x) >, where α is a root of the
polynomial f (x) over its extension field.

The irreducible polynomial f (x) ∈ Zp[x] of degree m is a primitive
polynomial iff f (x) | xk − 1 for k = pm − 1 and for no smaller positive
integer k.
For each m ≥ 1, ∃ a monic primitive polynomial of degree m over
Zp. In fact, there are precisely φ(pm−1)

m such polynomials.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 142 / 144



Extension Fields Finite Fields

Finite Fields

Definition
An irreducible polynomial f ∈ Zp[x] of degree m is called a primitive
polynomial if α is a generator of F∗pm , the multiplicative group of all the
non-zero elements in Fpm = Zp[x]/ < f (x) >, where α is a root of the
polynomial f (x) over its extension field.

The irreducible polynomial f (x) ∈ Zp[x] of degree m is a primitive
polynomial iff f (x) | xk − 1 for k = pm − 1 and for no smaller positive
integer k.

For each m ≥ 1, ∃ a monic primitive polynomial of degree m over
Zp. In fact, there are precisely φ(pm−1)

m such polynomials.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 142 / 144



Extension Fields Finite Fields

Finite Fields

Definition
An irreducible polynomial f ∈ Zp[x] of degree m is called a primitive
polynomial if α is a generator of F∗pm , the multiplicative group of all the
non-zero elements in Fpm = Zp[x]/ < f (x) >, where α is a root of the
polynomial f (x) over its extension field.

The irreducible polynomial f (x) ∈ Zp[x] of degree m is a primitive
polynomial iff f (x) | xk − 1 for k = pm − 1 and for no smaller positive
integer k.
For each m ≥ 1, ∃ a monic primitive polynomial of degree m over
Zp. In fact, there are precisely φ(pm−1)

m such polynomials.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 142 / 144



Extension Fields Finite Fields

References

John B. Fraleigh,
A First Course in Abstract Algebra, Pearson, 2014.

I. N. Herstein,
Topics in Algebra, John Wiley & Sons, 1975.

Alko R. Meijer,
Algebra for Cryptologists, Springer, 2016.

Gerard O’Regan,
Guide to Discrete Mathematics: An Accessible Introduction to the
History, Theory, Logic and Applications, Springer 2016.

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Introduction to Abstract Algebra July 20, 2023 143 / 144



Extension Fields Finite Fields

The End

Thanks a lot for your attention!
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