Basic Structures

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow
ddey@iiitl.ac.in

July 20, 2023

Disclaimers

All the pictures used in this presentation are taken from freely available websites.

2

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

Outline

(1) Set Theory

- Cartesian Product \& Binary Relation
- Partition
- Function
- Countable \& Uncountable Sets

Set

Set theory is that mathematical discipline which today occupies an outstanding role in our science and radiates its powerful influence into all branches of mathematics

Set

Set theory is that mathematical discipline which today occupies an outstanding role in our science and radiates its powerful influence into all branches of mathematics

Definition

A set is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole.

\author{

- Georg Cantor
}

Set

Set theory is that mathematical discipline which today occupies an outstanding role in our science and radiates its powerful influence into all branches of mathematics

Definition

A set is any collection of definite, distinguishable objects of our intuition or of our intellect to be conceived as a whole.

- Georg Cantor

Definition

A set is a well defined collection of objects.

Set

Exercise

Which of the following collections is a set:
(1) Collection of some integers.
(1) Collection of small primes.

Set

Exercise

Which of the following collections is a set:
(1) Collection of some integers.
(1) Collection of small primes.
(1) Collection of positive integer ≥ 300 digits.
(0) Collection of all English alphabet.
(1) Collection of all employee of IIIT Lucknow.

Set

Exercise

Which of the following collections is a set:
(1) Collection of some integers.
(1) Collection of small primes.
(II) Collection of positive integer ≥ 300 digits.
(v) Collection of all English alphabet.
(v) Collection of all employee of IIIT Lucknow.
(D) Collection of all rich people in Lucknow.
(17) $\left\{x: x\right.$ is an integer $\left.s / t x^{2}=2\right\}$
(1i) Collection of all functions $f: \mathbb{N} \rightarrow \mathbb{N}$
(ख) Collection of all one-to-one functions $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$, where n is a positive integer.

Set

Exercise

Which of the following collections is a set:
(x) Collection of all possible plaintexts.
(xi) Collections of all possible encryption functions.
(xii) Collection of all decision problems.
(xiii) Collection of all computable functions

Set

Exercise

Which of the following collections is a set:
(x) Collection of all possible plaintexts.
(xi) Collections of all possible encryption functions.
(xii) Collection of all decision problems.
(xiii) Collection of all computable functions

The term 'well defined' specifies that it can be determined whether or not certain objects belong to the set in question.

Definition

Definition

A set is said to be empty (or null) set if it does not contain any element. It is denoted by ϕ or by \{\}.

Definition

If X and Y are two sets s / t every element of X is also an element of Y, then X is called subset of Y and is denoted by $X \subseteq Y$ (or simply by $X \subset Y$).

Notations

| $\mathbb{N}\left(\right.$ or $_{\left.\mathbb{Z}_{>0}\right)}$ | the set of all positive integers |
| ---: | :--- | :--- |
| $\mathbb{Z}_{\geq 0}$ | the set of all non-negative integers |
| \mathbb{Z} | the set of all integers (positive, negative, and zero) |
| \mathbb{Q} | the set of all rational numbers |
| $\mathbb{Q}_{>0}$ | the set of all positive rational numbers |
| \mathbb{R} | the set of all real numbers |
| $\mathbb{R}_{>0}$ | the set of all positive real numbers |
| \mathbb{C} | the set of all complex numbers |
| \exists | 'there exists' |
| \forall | 'for all' |
| \ni | 'such that' |
| $!$ | 'uniqueness' |
| $P \Rightarrow Q$ | P implies Q (or if P, then Q) |
| $P \Leftrightarrow Q$ | P implies $Q \& Q$ implies P (or if and only if, i.e., iff) |

Examples

Example

(1) $\mathbb{N} \subset \mathbb{Z}$
(II) $\mathbb{Z} \subset \mathbb{Q}$
(II) $\mathbb{Q} \subset \mathbb{R}$
(D) $\mathbb{R} \subset \mathbb{C}$
(D) $B=\left\{b: b \in\{0,1\}^{8}\right\} \subset W=\left\{w: w \in\{0,1\}^{32}\right\}$

Definition \& Properties

Definition

Two sets X and Y are said to be equal, denoted by $X=Y$ iff they have the same elements.

Proposition

(1) $X=Y$ iff $X \subseteq Y$ and $Y \subseteq X$;
(1) All null subsets are equal.

Proposition

A set X of n elements has 2^{n} subsets.

Definition

Definition

The union (or join) of two sets A and B, written as $A \cup B$, is the set $A \cup B=\{x: x \in A$ or $x \in B\}$.

Definition

The intersection (or meet) of two sets A and B, written as $A \cap B$, is the set $A \cap B=\{x: x \in A$ and $x \in B\}$.

Definition

Two non-empty sets A and B are said to be disjoint iff $A \cap B=\phi$.

Definition

Definition

The difference of a set A w.r.t. a set B, denoted by $B \backslash A$ is the set of exactly all elements which belong to B but not to A, i.e.,

$$
B \backslash A=\{x \in B: x \notin A\} .
$$

Definition

Definition

The difference of a set A w.r.t. a set B, denoted by $B \backslash A$ is the set of exactly all elements which belong to B but not to A, i.e.,

$$
B \backslash A=\{x \in B: x \notin A\} .
$$

Definition

The symmetric difference of two given sets A and B, denoted by $A \Delta B$, is defined by

$$
A \Delta B=(A \backslash B) \cup(B \backslash A)
$$

Properties

Theorem

Each of the operations \cup and \cap is
(1) Idempotent: $A \cup A=A=A \cap A$, for every set A;
(1) Associative: $A \cup(B \cup C)=(A \cup B) \cup C$ and $A \cap(B \cap C)=(A \cap B) \cap C$ for any three sets A, B, C;
(II) Commutative: $A \cup B=B \cup A$ and $A \cap B=B \cap A$ for any two sets A, B;

Properties

Theorem

Each of the operations \cup and \cap is
(1) Idempotent: $A \cup A=A=A \cap A$, for every set A;
(1) Associative: $A \cup(B \cup C)=(A \cup B) \cup C$ and $A \cap(B \cap C)=(A \cap B) \cap C$ for any three sets A, B, C;
(iil) Commutative: $A \cup B=B \cup A$ and $A \cap B=B \cap A$ for any two sets A, B;
(©) Distributive: \cap distributes over \cup and \cup distributes over \cap :
(a) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$;
(D) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ for any three sets A, B, C.

Outline

(1) Set Theory

- Cartesian Product \& Binary Relation
- Partition
- Function
- Countable \& Uncountable Sets

Definition

Definition

Let X and Y be two sets.
Then the Cartesian product of X and Y in this order to be denoted by $X \times Y$, is defined by

$$
\begin{aligned}
X \times Y & :=\{(x, y): x \in X, y \in Y\} \\
& :=\phi \text { if either } X \text { or } Y=\phi,
\end{aligned}
$$

where (x, y) denotes the ordered pairs with x as the $1^{\text {st }}$ coordinate and y as the $2^{\text {nd }}$ coordinate.

Definition

Definition

Let X and Y be two sets.
Then the Cartesian product of X and Y in this order to be denoted by $X \times Y$, is defined by

$$
\begin{aligned}
X \times Y & :=\{(x, y): x \in X, y \in Y\} \\
& :=\phi \text { if either } X \text { or } Y=\phi,
\end{aligned}
$$

where (x, y) denotes the ordered pairs with x as the $1^{\text {st }}$ coordinate and y as the $2^{\text {nd }}$ coordinate.

Definition

A binary relation ρ from X to Y is by definition a subset of $X \times Y$.
If $(x, y) \in \rho$ we sometimes write $x \rho y$ holds.

Definition \& Example

Definition

Let $\rho: X \rightarrow Y$ and $\sigma: Y \rightarrow Z$ binary relation. Then the composite $\sigma \circ \rho$ in this order is defined by

$$
\sigma \circ \rho:=\{(x, z): \text { for some } y \in Y \text { such that }(x, y) \in \rho \&(y, z) \in \sigma\} .
$$

Definition \& Example

Definition

Let $\rho: X \rightarrow Y$ and $\sigma: Y \rightarrow Z$ binary relation. Then the composite $\sigma \circ \rho$ in this order is defined by

$$
\sigma \circ \rho:=\{(x, z): \text { for some } y \in Y \text { such that }(x, y) \in \rho \&(y, z) \in \sigma\} .
$$

Example

Let $X=\{1,2,3,4,5\}, Y=\{3,4,5,6\}$ and $Z=\{3,9,7,4\}$.
Let $\rho=\{(1,3),(2,4),(3,3),(4,6)\}$ and $\sigma=\{(3,3),(3,9),(4,4),(5,9)\}$.
Then $\sigma \circ \rho=$

Definition \& Example

Definition

Let $\rho: X \rightarrow Y$ and $\sigma: Y \rightarrow Z$ binary relation. Then the composite $\sigma \circ \rho$ in this order is defined by

$$
\sigma \circ \rho:=\{(x, z): \text { for some } y \in Y \text { such that }(x, y) \in \rho \&(y, z) \in \sigma\}
$$

Example

Let $X=\{1,2,3,4,5\}, Y=\{3,4,5,6\}$ and $Z=\{3,9,7,4\}$.
Let $\rho=\{(1,3),(2,4),(3,3),(4,6)\}$ and $\sigma=\{(3,3),(3,9),(4,4),(5,9)\}$.
Then $\sigma \circ \rho=\{(1,3),(1,9),(2,4),(3,3),(3,9)\}$.
From this construction it is clear that $\sigma \circ \rho$ may be ϕ even if $\rho \neq \phi$ and $\sigma \neq \phi$.
Note: rho is said to be null relation if $\rho=\phi$ and ρ is said to be Cartesian product relation $\rho=X \times Y$.

Definition \& Properties

Definition
Let ρ be a binary relation from $X \rightarrow Y$, then ρ^{-1} is a relation from $Y \rightarrow X$, defined by

$$
\rho^{-1}=\{(y, x):(x, y) \in \rho\} .
$$

Definition \& Properties

Definition

Let ρ be a binary relation from $X \rightarrow Y$, then ρ^{-1} is a relation from $Y \rightarrow X$, defined by

$$
\rho^{-1}=\{(y, x):(x, y) \in \rho\}
$$

Proposition

Let $\rho: X \rightarrow Y, \sigma: Y \rightarrow Z$ and $\delta: Z \rightarrow W$ be binary relations. Then
(i) $\delta \circ(\sigma \circ \rho)=(\delta \circ \sigma) \circ \rho$;
(ii) $(\sigma \circ \rho)^{-1}=\rho^{-1} \circ \sigma^{-1}$.

If $X=Y$ and ρ is a binary relation from X to X, then we say that ρ is a binaty relation on X.

Type of Relations

Definition

(1) Let ρ be a binary relation on $X(\neq \phi)$ then ρ is said to be reflexive iff for each $x \in X,(x, x) \in \rho$ i.e., iff $\Delta x=\{(x, x): x \in X\} \subset \rho$.

Type of Relations

Definition

(1) Let ρ be a binary relation on $X(\neq \phi)$ then ρ is said to be reflexive iff for each $x \in X,(x, x) \in \rho$ i.e., iff $\Delta x=\{(x, x): x \in X\} \subset \rho$.
(1) ρ is said to be symmetric iff for each $(x, y) \in \rho \Rightarrow(y, x) \in \rho$ i.e. iff $\rho=\rho^{-1}$.

Type of Relations

Definition

(1) Let ρ be a binary relation on $X(\neq \phi)$ then ρ is said to be reflexive iff for each $x \in X,(x, x) \in \rho$ i.e., iff $\Delta x=\{(x, x): x \in X\} \subset \rho$.
(1) ρ is said to be symmetric iff for each $(x, y) \in \rho \Rightarrow(y, x) \in \rho$ i.e. iff $\rho=\rho^{-1}$.
(II) ρ is said to be asymmetric iff ρ is not symmetric i.e. $\exists x, y \in X s / t$ $(x, y) \in \rho$ but $(y, x) \notin \rho$.

Type of Relations

Definition

(1) Let ρ be a binary relation on $X(\neq \phi)$ then ρ is said to be reflexive iff for each $x \in X,(x, x) \in \rho$ i.e., iff $\Delta x=\{(x, x): x \in X\} \subset \rho$.
(1) ρ is said to be symmetric iff for each $(x, y) \in \rho \Rightarrow(y, x) \in \rho$ i.e. iff $\rho=\rho^{-1}$.
(III ρ is said to be asymmetric iff ρ is not symmetric i.e. $\exists x, y \in X s / t$ $(x, y) \in \rho$ but $(y, x) \notin \rho$.
(iv) ρ is said to be transitive iff for each triplet $x, y, z \in X,(x, y) \in \rho$ and $(y, z) \in \rho \Rightarrow(x, z) \in \rho$ i.e. iff $\rho \circ \rho \subset \rho$.

Type of Relations

Definition

(1) Let ρ be a binary relation on $X(\neq \phi)$ then ρ is said to be reflexive iff for each $x \in X,(x, x) \in \rho$ i.e., iff $\Delta x=\{(x, x): x \in X\} \subset \rho$.
(1) ρ is said to be symmetric iff for each $(x, y) \in \rho \Rightarrow(y, x) \in \rho$ i.e. iff $\rho=\rho^{-1}$.
(II) ρ is said to be asymmetric iff ρ is not symmetric i.e. $\exists x, y \in X s / t$ $(x, y) \in \rho$ but $(y, x) \notin \rho$.
(©) ρ is said to be transitive iff for each triplet $x, y, z \in X,(x, y) \in \rho$ and $(y, z) \in \rho \Rightarrow(x, z) \in \rho$ i.e. iff $\rho \circ \rho \subset \rho$.
(D) ρ is said to be antisymmetric, iff $(x, y) \in \rho$ and $(y, x) \in \rho \Rightarrow x=y$ i.e. if $x \neq y$ at most one of (x, y) or (y, x) can belong to ρ.

Type of Relations

Definition

(a) ρ is said to be complete iff for each $x, y \in X$ either $(x, y) \in \rho$ or $(y, x) \in \rho$.

Type of Relations

Definition

(D) ρ is said to be complete iff for each $x, y \in X$ either $(x, y) \in \rho$ or $(y, x) \in \rho$.
(ai) A binary relation ρ on a non-void set X is said to be an equivalence relation iff ρ is reflexive, symmetric and transitive.

Type of Relations

Definition

(al) ρ is said to be complete iff for each $x, y \in X$ either $(x, y) \in \rho$ or $(y, x) \in \rho$.
(Iit A binary relation ρ on a non-void set X is said to be an equivalence relation iff ρ is reflexive, symmetric and transitive.
(1i1) A binary relation ρ on $X(\neq \phi)$ is said to be a pre-order iff ρ is reflexive and transitive.

Type of Relations

Definition

(D) ρ is said to be complete iff for each $x, y \in X$ either $(x, y) \in \rho$ or $(y, x) \in \rho$.
(Iit A binary relation ρ on a non-void set X is said to be an equivalence relation iff ρ is reflexive, symmetric and transitive.
(1i1) A binary relation ρ on $X(\neq \phi)$ is said to be a pre-order iff ρ is reflexive and transitive.
(10) ρ is said to be partial order on X (and we say that (X, ρ) is a poset) iff ρ is reflexive, antisymmetric and transitive.

Type of Relations

Definition

(D) ρ is said to be complete iff for each $x, y \in X$ either $(x, y) \in \rho$ or $(y, x) \in \rho$.
(Iit A binary relation ρ on a non-void set X is said to be an equivalence relation iff ρ is reflexive, symmetric and transitive.
(1i1) A binary relation ρ on $X(\neq \phi)$ is said to be a pre-order iff ρ is reflexive and transitive.
(10) ρ is said to be partial order on X (and we say that (X, ρ) is a poset) iff ρ is reflexive, antisymmetric and transitive.
(a) ρ is said to be a linear order (or total order or chain) on X (and (X, ρ) is said to be a linear ordered set) iff ρ is a partial order and complete.

Examples

Example

Equivalence relation

Let \mathbb{Z} be the set of integers and n be a positive integer. Define a relation ρ on \mathbb{Z} by $(x, y) \in \rho$ iff $y-x$ is divisible by n, i.e., $y-x=k . n$ for some $k \in \mathbb{Z}$. Then ρ is an equivalence relation.

Examples

Example

Equivalence relation

Let \mathbb{Z} be the set of integers and n be a positive integer. Define a relation ρ on \mathbb{Z} by $(x, y) \in \rho$ iff $y-x$ is divisible by n, i.e., $y-x=k . n$ for some $k \in \mathbb{Z}$. Then ρ is an equivalence relation.

Different partial order relations

Exercise

Exercise

Give an example of binary relation ρ on a set $X \mathrm{~s} / t$
(1) ρ is symmetric and reflexive but not transitive.
(1) ρ is reflexive and transitive but not symmetric.
(II) ρ is symmetric and transitive but not reflexive.
(ID) ρ is pre-order but not partial order.
(D) ρ is partial order but not linear order.

트

Definition

Definition

(1) Let (X, \leq) be a poset and S be a subset of X. Then an element $x_{0} \in X$ is called an upper bound (or lower bound) of S iff for each $x \in S, x \leq x_{0}\left(\right.$ or $\left.x_{0} \leq x\right)$.

Definition

Definition

(1) Let (X, \leq) be a poset and S be a subset of X. Then an element $x_{0} \in X$ is called an upper bound (or lower bound) of S iff for each $x \in S, x \leq x_{0}\left(\right.$ or $\left.x_{0} \leq x\right)$.
(II) x_{0} will be said to be a lub (least upper bound) [or glb (greatest lower bound)] of S iff
(1) x_{0} is an upper bound of S
(1) if y be any upper bound of S then $x_{0} \leq y$.

Definition

Definition

(1) Let (X, \leq) be a poset and S be a subset of X. Then an element $x_{0} \in X$ is called an upper bound (or lower bound) of S iff for each $x \in S, x \leq x_{0}\left(\right.$ or $\left.x_{0} \leq x\right)$.
(II) x_{0} will be said to be a lub (least upper bound) [or glb (greatest lower bound)] of S iff
(1) x_{0} is an upper bound of S
(1) if y be any upper bound of S then $x_{0} \leq y$.
or
(1) x_{0} is a lower bound of S
(1) if y be any lower bound of S then $y \leq x_{0}$.

Definition and Example

Definition

An element x_{0} is called the greatest or maximum element of a subset S iff
(1) x_{0} is an upper bound of S \&
(1) $x_{0} \in S$.

Definition and Example

Definition

An element x_{0} is called the greatest or maximum element of a subset S iff
(1) x_{0} is an upper bound of S \&
(1) $x_{0} \in S$.

Example

(1) Consider \mathbb{R} with usual linear order \leq, i.e., $x \leq y$ iff $x-y \leq 0$. Let $T=(0,1) \subset \mathbb{R}$. Then $g l b T=0 \& l u b T=1$. But T does not have greatest or least element.

Definition and Example

Definition

An element x_{0} is called the greatest or maximum element of a subset S iff
(1) x_{0} is an upper bound of S \&
(1) $x_{0} \in S$.

Example

(1) Consider \mathbb{R} with usual linear order \leq, i.e., $x \leq y$ iff $x-y \leq 0$. Let $T=(0,1) \subset \mathbb{R}$. Then $g l b T=0 \& l u b T=1$. But T does not have greatest or least element.
(1) Let $T=\{x: x>0\} \subset \mathbb{R}$. Then T does not have a lub but it has a $g l b=0$. But it does not have a least element.

Definition and Example

Definition

Let (X, \leq) be a poset and $S \subseteq X$ be a non-empty subset. An element $x_{0} \in S$ is said to be a maximal element of S iff for any $y \in S \& x_{0} \leq y \Rightarrow x_{0}=y$, i.e., if $y \in S$, then $y \nsucc x_{0}$.

Definition and Example

Definition

Let (X, \leq) be a poset and $S \subseteq X$ be a non-empty subset. An element $x_{0} \in S$ is said to be a maximal element of S iff for any $y \in S \& x_{0} \leq y \Rightarrow x_{0}=y$, i.e., if $y \in S$, then $y \nsucc x_{0}$.

- Dually, one can define minimal element in a set S.
- If S has a greatest or least element then they are rsp ! maximal or minimal element of S.

Definition and Example

Definition

Let (X, \leq) be a poset and $S \subseteq X$ be a non-empty subset. An element $x_{0} \in S$ is said to be a maximal element of S iff for any $y \in S \& x_{0} \leq y \Rightarrow x_{0}=y$, i.e., if $y \in S$, then $y \nsucc x_{0}$.

- Dually, one can define minimal element in a set S.
- If S has a greatest or least element then they are rsp! maximal or minimal element of S.

Example

Let $X=\mathbb{N}$ and $X_{0} \subseteq \mathcal{P}(\mathbb{N})$ be the set of all non-void subset of \mathbb{N} which contains at most n elements, where $n>1$. Let the partial order relation on X be defined by \leq, i.e., for any $A, B \in X_{0}, A \leq B$ iff $A \subseteq B$. This is a partial order on X_{0} (induced on $\mathcal{P}(\mathbb{N})$). The maximal element

Definition and Example

Definition

Let (X, \leq) be a poset and $S \subseteq X$ be a non-empty subset. An element $x_{0} \in S$ is said to be a maximal element of S iff for any $y \in S \& x_{0} \leq y \Rightarrow x_{0}=y$, i.e., if $y \in S$, then $y \nsucc x_{0}$.

- Dually, one can define minimal element in a set S.
- If S has a greatest or least element then they are rsp! maximal or minimal element of S.

Example

Let $X=\mathbb{N}$ and $X_{0} \subseteq \mathcal{P}(\mathbb{N})$ be the set of all non-void subset of \mathbb{N} which contains at most n elements, where $n>1$. Let the partial order relation on X be defined by \leq, i.e., for any $A, B \in X_{0}, A \leq B$ iff $A \subseteq B$. This is a partial order on X_{0} (induced on $\mathcal{P}(\mathbb{N})$). The maximal elementin X_{0} are all the set which contains n elements. So there are infinite number of maximal element. And

Definition and Example

Definition

Let (X, \leq) be a poset and $S \subseteq X$ be a non-empty subset. An element $x_{0} \in S$ is said to be a maximal element of S iff for any $y \in S \& x_{0} \leq y \Rightarrow x_{0}=y$, i.e., if $y \in S$, then $y \nsucc x_{0}$.

- Dually, one can define minimal element in a set S.
- If S has a greatest or least element then they are rsp! maximal or minimal element of S.

Example

Let $X=\mathbb{N}$ and $X_{0} \subseteq \mathcal{P}(\mathbb{N})$ be the set of all non-void subset of \mathbb{N} which contains at most n elements, where $n>1$. Let the partial order relation on X be defined by \leq, i.e., for any $A, B \in X_{0}, A \leq B$ iff $A \subseteq B$. This is a partial order on X_{0} (induced on $\mathcal{P}(\mathbb{N})$). The maximal elementin X_{0} are all the set which contains n elements. So there are infinite number of maximal element. And all the singleton set are the minimal element and the minimal element are also infinite.

Well-ordered Set

Definition

A poset in which each pair of elements
(1) has the lub is called an upper semi-lattice;
(1) has the glb is called a lower semi-lattice; and
(ii) has both the lub and the glb are called a lattice.

Well-ordered Set

Definition

A poset in which each pair of elements
(1) has the lub is called an upper semi-lattice;
(1) has the glb is called a lower semi-lattice; and
(II) has both the lub and the glb are called a lattice.

The question arises when can we say that a partially ordered set (X, \leq) has a maximal element?

Well-ordered Set

Definition

A poset in which each pair of elements
(1) has the lub is called an upper semi-lattice;
(1) has the glb is called a lower semi-lattice; and
(II) has both the lub and the glb are called a lattice.

The question arises when can we say that a partially ordered set (X, \leq) has a maximal element?

Lemma

(Zorn's Lemma) Let (X, \leq) be a poset s / t each linearly ordered subset has a lub. Then X has a maximal element.

Well-ordered Set

Definition

Let (X, \leq) be a poset. Then X is said to be well-ordered set (and \leq an well ordering of X) iff each non-void subset of X has a least element.

Well-ordered Set

Definition

Let (X, \leq) be a poset. Then X is said to be well-ordered set (and \leq an well ordering of X) iff each non-void subset of X has a least element.

Note: Any well-ordered set is a linearly ordered. Real line \mathbb{R} or set of integers \mathbb{Z} with usual linear ordering \leq is not well-ordered.

Well-ordered Set

Definition

Let (X, \leq) be a poset. Then X is said to be well-ordered set (and \leq an well ordering of X) iff each non-void subset of X has a least element.

Note: Any well-ordered set is a linearly ordered. Real line \mathbb{R} or set of integers \mathbb{Z} with usual linear ordering \leq is not well-ordered. The set $\mathbb{Z}_{\geq 0}$ of all non-negative integers is well-ordered.

Theorem

Zermelo's Theorem: Every non-void set can be well-ordered.

Well-ordering theorem (above) \Longleftrightarrow Zorn's lemma.

Outline

(1) Set Theory

- Cartesian Product \& Binary Relation
- Partition
- Function
- Countable \& Uncountable Sets

Partition

Partition

Definition

Let X be a non-void set. Then a family \mathcal{P} of subset of X is called a partition of X iff
(1) for each $A, B \in \mathcal{P}$ either $A=B$ or $A \cap B=\phi$
(1) $\cup\{A: A \in \mathcal{P}\}=X$.

Partition

Definition

Let X be a non-void set. Then a family \mathcal{P} of subset of X is called a partition of X iff
(i) for each $A, B \in \mathcal{P}$ either $A=B$ or $A \cap B=\phi$
(ii) $\cup\{A: A \in \mathcal{P}\}=X$.

Theorem

Let X be a non-void set and ρ be an equivalence relation on X. Let
$(x)=\{y \in X:(x, y) \in \rho\}$. Then
(i) for each $x \in X, x \in(x)$
(ii) for each $x, y \in X$ either $(x)=(y)$ or $(x) \cap(y)=\phi$
(iii) if $\mathcal{P}(\rho)=\{(x)$: $x \in X\}$, then $\mathcal{P}(\rho)$ is a partition of X induced by ρ.

Conversely, let \mathcal{P} be a partition of X, then \mathcal{P} generates an equivalence relation.

Example

Example

Let $X=\mathbb{Z}$ and n be a positive integer >1.
Define ρ on \mathbb{Z} by $(x, y) \in \rho$ iff $x-y=k . n$ i.e., $x-y$ is divisible by n.
Clearly, ρ is an equivalence relation. $(x, y) \in \rho$ iff x, y when divisible by n leaves the same remainder.

Example

Example

Let $X=\mathbb{Z}$ and n be a positive integer >1.
Define ρ on \mathbb{Z} by $(x, y) \in \rho$ iff $x-y=k . n$ i.e., $x-y$ is divisible by n.
Clearly, ρ is an equivalence relation. $(x, y) \in \rho$ iff x, y when divisible by n leaves the same remainder.

Division Algorithm: Let $a, b \in \mathbb{Z}$ and $b \neq 0$. Then \exists ! integer q \& r with $r \geq 0$ $\mathrm{s} / \mathrm{t} a=b . q+r$, where $0 \leq r<|b|$.

Example

Example

Let $X=\mathbb{Z}$ and n be a positive integer >1.
Define ρ on \mathbb{Z} by $(x, y) \in \rho$ iff $x-y=k . n$ i.e., $x-y$ is divisible by n.
Clearly, ρ is an equivalence relation. $(x, y) \in \rho$ iff x, y when divisible by n leaves the same remainder.

Division Algorithm: Let $a, b \in \mathbb{Z}$ and $b \neq 0$. Then \exists ! integer q \& r with $r \geq 0$ $\mathrm{s} / \mathrm{t} a=b . q+r$, where $0 \leq r<|b|$.
Since there are exactly n possible remainders $0,1,2, \cdots, n-1$, so there are n equivalence classes, viz., (0), (1), (2), $\cdots,(n-1)$. If $m \in \mathbb{Z}$, (m) must be one of the above classes.

Example

Example

Let $X=\mathbb{Z}$ and n be a positive integer >1.
Define ρ on \mathbb{Z} by $(x, y) \in \rho$ iff $x-y=k . n$ i.e., $x-y$ is divisible by n.
Clearly, ρ is an equivalence relation. $(x, y) \in \rho$ iff x, y when divisible by n leaves the same remainder.

Division Algorithm: Let $a, b \in \mathbb{Z}$ and $b \neq 0$. Then \exists ! integer q \& r with $r \geq 0$ $\mathrm{s} / \mathrm{t} a=b . q+r$, where $0 \leq r<|b|$.

Since there are exactly n possible remainders $0,1,2, \cdots, n-1$, so there are n equivalence classes, viz., (0), (1), (2), $\cdots,(n-1)$.
If $m \in \mathbb{Z}$, (m) must be one of the above classes.
Note: Let X be a non-void set and ρ be an equivalence relation on X. The $\mathcal{P}(\rho)$ is usually denoted by X / ρ is called qutioned set of X by ρ.

Outline

(1) Set Theory

- Cartesian Product \& Binary Relation
- Partition
- Function
- Countable \& Uncountable Sets

Functions

Definition

A function f on X to Y is a binary relation from X to Y s/t for each $x \in X,\left(x, y_{1}\right) \&\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}$.

Domain of $f:=\{x \in X:(x, y) \in f$ for some $y \in Y\}$.

Range of $f:=\{y \in Y:(x, y) \in f$ for some $x \in X\}$. $\}$

Functions

Definition

A function f on X to Y is a binary relation from X to Y s/t for each $x \in X,\left(x, y_{1}\right) \&\left(x, y_{2}\right) \in f \Rightarrow y_{1}=y_{2}$.

$$
\text { Domain of } f:=\{x \in X:(x, y) \in f \text { for some } y \in Y\} \text {. }
$$

$$
\text { Range of } f:=\{y \in Y:(x, y) \in f \text { for some } x \in X\} .\}
$$

If $(x, y) \in f$, then we write $y=f(x)$ and call y the image of x under f. Thus a function f is a correspondence which associates with each point of $x \in$ Domain f a! element $y(=f(x)) \in Y$.

Our definition of function identifies a function with its graph, i.e.

$$
f \equiv\{(x, y) \in X \times Y: y=f(x)\} .
$$

If domain of $f=X$, we use the symbol $f: X \rightarrow Y$.

Functions

Definition

Let $f: X \rightarrow Y$ and $A \subseteq X, B \subseteq Y$, then the direct image of A under f to be denoted by $f(A)$ is defined by

$$
\begin{aligned}
f(A) & :=\{y \in Y:(x, y) \in f \text { for some } x \in A\} \\
& :=\{y \in Y: y=f(x) \text { for some } x \in A\}
\end{aligned}
$$

Functions

Definition

Let $f: X \rightarrow Y$ and $A \subseteq X, B \subseteq Y$, then the direct image of A under f to be denoted by $f(A)$ is defined by

$$
\begin{aligned}
f(A) & :=\{y \in Y:(x, y) \in f \text { for some } x \in A\} \\
& :=\{y \in Y: y=f(x) \text { for some } x \in A\}
\end{aligned}
$$

Inverse image of B under f to be denoted by $f^{-1}(B)$ is defined by

$$
\begin{aligned}
f^{-1}(B) & :=\{x \in X:(x, y) \in f \text { for some } y \in B\} \\
& :=\{x \in X: y=f(x) \text { for some } y \in B\}
\end{aligned}
$$

Functions

Definition

Let $f: X \rightarrow Y$ and $A \subseteq X, B \subseteq Y$, then the direct image of A under f to be denoted by $f(A)$ is defined by

$$
\begin{aligned}
f(A) & :=\{y \in Y:(x, y) \in f \text { for some } x \in A\} \\
& :=\{y \in Y: y=f(x) \text { for some } x \in A\}
\end{aligned}
$$

Inverse image of B under f to be denoted by $f^{-1}(B)$ is defined by

$$
\begin{aligned}
f^{-1}(B) & :=\{x \in X:(x, y) \in f \text { for some } y \in B\} \\
& :=\{x \in X: y=f(x) \text { for some } y \in B\}
\end{aligned}
$$

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}, s / t, x \mapsto x^{2}$ and $A=(-2,4), B=(-1,4)$. Therefore, $f(A)=$

Functions

Definition

Let $f: X \rightarrow Y$ and $A \subseteq X, B \subseteq Y$, then the direct image of A under f to be denoted by $f(A)$ is defined by

$$
\begin{aligned}
f(A) & :=\{y \in Y:(x, y) \in f \text { for some } x \in A\} \\
& :=\{y \in Y: y=f(x) \text { for some } x \in A\}
\end{aligned}
$$

Inverse image of B under f to be denoted by $f^{-1}(B)$ is defined by

$$
\begin{aligned}
f^{-1}(B) & :=\{x \in X:(x, y) \in f \text { for some } y \in B\} \\
& :=\{x \in X: y=f(x) \text { for some } y \in B\}
\end{aligned}
$$

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}, s / t, x \mapsto x^{2}$ and $A=(-2,4), B=(-1,4)$. Therefore, $f(A)=(0,16), f^{-1}(B)$

Functions

Definition

Let $f: X \rightarrow Y$ and $A \subseteq X, B \subseteq Y$, then the direct image of A under f to be denoted by $f(A)$ is defined by

$$
\begin{aligned}
f(A) & :=\{y \in Y:(x, y) \in f \text { for some } x \in A\} \\
& :=\{y \in Y: y=f(x) \text { for some } x \in A\}
\end{aligned}
$$

Inverse image of B under f to be denoted by $f^{-1}(B)$ is defined by

$$
\begin{aligned}
f^{-1}(B) & :=\{x \in X:(x, y) \in f \text { for some } y \in B\} \\
& :=\{x \in X: y=f(x) \text { for some } y \in B\}
\end{aligned}
$$

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}, s / t, x \mapsto x^{2}$ and $A=(-2,4), B=(-1,4)$. Therefore, $f(A)=(0,16), f^{-1}(B)=(-2,2)$. If $C=(-2,-1), f^{-1}(C)$

Functions

Definition

Let $f: X \rightarrow Y$ and $A \subseteq X, B \subseteq Y$, then the direct image of A under f to be denoted by $f(A)$ is defined by

$$
\begin{aligned}
f(A) & :=\{y \in Y:(x, y) \in f \text { for some } x \in A\} \\
& :=\{y \in Y: y=f(x) \text { for some } x \in A\}
\end{aligned}
$$

Inverse image of B under f to be denoted by $f^{-1}(B)$ is defined by

$$
\begin{aligned}
f^{-1}(B) & :=\{x \in X:(x, y) \in f \text { for some } y \in B\} \\
& :=\{x \in X: y=f(x) \text { for some } y \in B\}
\end{aligned}
$$

Example

Let $f: \mathbb{R} \rightarrow \mathbb{R}, s / t, x \mapsto x^{2}$ and $A=(-2,4), B=(-1,4)$. Therefore, $f(A)=(0,16), f^{-1}(B)=(-2,2)$. If $C=(-2,-1), f^{-1}(C)=\phi$.

Functions

Theorem

Let $f: X \rightarrow Y$ be a function and let $A, B \subseteq X$ and $C, D \subseteq Y$. Then
(1) $f(A \cup B)=f(A) \cup f(B)$
(1) $f(A \cap B) \subseteq f(A) \cap f(B)$
(II) $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$
(D) $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$
(D) $f^{-1}(Y \backslash D)=X \backslash f^{-1}(D)$

Functions

Theorem

Let $f: X \rightarrow Y$ be a function and let $A, B \subseteq X$ and $C, D \subseteq Y$. Then
(1) $f(A \cup B)=f(A) \cup f(B)$
(1) $f(A \cap B) \subseteq f(A) \cap f(B)$
(II) $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$
(D) $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$
(2) $f^{-1}(Y \backslash D)=X \backslash f^{-1}(D)$

Example

Let $f: X \rightarrow Y$ be not one-one. Then $\exists x_{1}, x_{2} \in X \mathrm{~s} / \mathrm{t} f\left(x_{1}\right)=f\left(x_{2}\right)=y$. Let $A=\left\{x_{1}\right\}, B=\left\{x_{2}\right\}$. Then $A \cap B=\phi$ and $f(A) \cap f(B)=\{y\}$.

This gives us $f(A \cap B)(=\phi) \subset f(A) \cap f(B)(=\{y\})$.

Functions

Definition

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions. Then the composition $g \circ f$ is defined by

$$
\begin{aligned}
g \circ f & =\{(x, z) \in X \times Z: \text { for some } y \in Y s / t(x, y) \in f \&(y, z) \in g\} \\
& =\{(x, z) \in X \times Z: \exists y \in Y \text { s/t } y=f(x) \& z=g(y)\}
\end{aligned}
$$

Proposition

Let $f: X \rightarrow Y, g: Y \rightarrow Z, h: Z \rightarrow W$ be functions. Then
$(h \circ g) \circ f=h \circ(g \circ f)$.

Functions

Definition

A function $f: X \rightarrow Y$ is said to be one-one or injective iff $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$, i.e., iff image of distinct elements are distinct.

Definition

A function $f: X \rightarrow Y$ is said to be onto or surjective iff $f(X)=Y$, i.e., iff for each $y \in Y \exists x \in X \mathrm{~s} / \mathrm{t} f(x)=y$.

Functions

Definition

A function $f: X \rightarrow Y$ is said to be one-one or injective iff $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$, i.e., iff image of distinct elements are distinct.

Definition

A function $f: X \rightarrow Y$ is said to be onto or surjective iff $f(X)=Y$, i.e., iff for each $y \in Y \exists x \in X \mathrm{~s} / \mathrm{t} f(x)=y$.

Note: Let $f: X \rightarrow Y$ be an injective function. Then f^{-1} is defined as a function on Y to X with domain $f^{-1}=$ range f and range $f^{-1}=\operatorname{domain} f$. Note: If $f: X \rightarrow Y$ is injective, f^{-1} : range $f \rightarrow X$ is also injective.

Functions

Definition

A function $f: X \rightarrow Y$ is said to be one-one or injective iff $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$, i.e., iff image of distinct elements are distinct.

Definition

A function $f: X \rightarrow Y$ is said to be onto or surjective iff $f(X)=Y$, i.e., iff for each $y \in Y \exists x \in X \mathrm{~s} / \mathrm{t} f(x)=y$.

Note: Let $f: X \rightarrow Y$ be an injective function. Then f^{-1} is defined as a function on Y to X with domain $f^{-1}=$ range f and range $f^{-1}=\operatorname{domain} f$.
Note: If $f: X \rightarrow Y$ is injective, $f^{-1}:$ range $f \rightarrow X$ is also injective.

Exercise

If $f: X \rightarrow Y$ is injective and $A, B \subseteq X$, then $f(A \cap B)=f(A) \cap f(B)$.

Functions

Definition

A function $f: X \rightarrow Y$ is said to be bijective iff it is injective and surjective.

Proposition

Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be functions, then
(1) $g \circ f$ is injective if f, g are injective,
(1) $g \circ f$ is surjective if g, f are surjective,
(IIT) $g \circ f$ is bijective if g, f are bijective,
(D) if $f: X \rightarrow Y$ be bijective, then $f^{-1}: Y \rightarrow X$ is bijective.

Functions

Definition

Let X be a non-void set and let $T=\mathcal{P}(X) \backslash \phi$ be the collection of all non-void subset of X. Then a choice function on X is a function $c: T \rightarrow X \mathrm{~s} / \mathrm{t}$ for each $A \in T, c(A) \in A$.

Functions

Definition

Let X be a non-void set and let $T=\mathcal{P}(X) \backslash \phi$ be the collection of all non-void subset of X. Then a choice function on X is a function $c: T \rightarrow X \mathrm{~s} / \mathrm{t}$ for each $A \in T, c(A) \in A$.

Axiom

Axiom of Choice: Every non-void set X admits a choice function.

$$
\text { Zorn's lemma } \Leftrightarrow \text { Well ordering theorem } \Leftrightarrow \text { Axiom of choice }
$$

Outline

(1) Set Theory

- Cartesian Product \& Binary Relation
- Partition
- Function
- Countable \& Uncountable Sets

Countable Sets

Definition

(i) Let $J_{n}=\{1,2,3, \cdots, n\}$. A set X is said to be finite iff either $X=\phi$ or \exists for some $n \in \mathbb{N}$ and $f: J_{n} \rightarrow X$ s/t f is bijective. In the latter case, $\# X=n$.
(ii) A set X is said to be infinite if it is not finite.

Countable Sets

Definition

(i) Let $J_{n}=\{1,2,3, \cdots, n\}$. A set X is said to be finite iff either $X=\phi$ or \exists for some $n \in \mathbb{N}$ and $f: J_{n} \rightarrow X$ s/t f is bijective. In the latter case, $\# X=n$.
(ii) A set X is said to be infinite if it is not finite.
(III) A set X is said to be countable (enumerable) iff either X is finite or \exists a bijection $f: \mathbb{N} \xrightarrow{\text { onto }} X$.

Countable Sets

Definition

(i) Let $J_{n}=\{1,2,3, \cdots, n\}$. A set X is said to be finite iff either $X=\phi$ or \exists for some $n \in \mathbb{N}$ and $f: J_{n} \rightarrow X$ s/t f is bijective. In the latter case, $\# X=n$.
(ii) A set X is said to be infinite if it is not finite.
(III) A set X is said to be countable (enumerable) iff either X is finite or \exists a bijection $f: \mathbb{N} \xrightarrow{\text { onto }} X$.

Proposition

(i) If X is countable and $A \subseteq X$, then A is countable.

Countable Sets

Definition

(i) Let $J_{n}=\{1,2,3, \cdots, n\}$. A set X is said to be finite iff either $X=\phi$ or \exists for some $n \in \mathbb{N}$ and $f: J_{n} \rightarrow X$ s/t f is bijective. In the latter case, $\# X=n$.
(ii) A set X is said to be infinite if it is not finite.
(iii) A set X is said to be countable (enumerable) iff either X is finite or \exists a bijection $f: \mathbb{N} \xrightarrow{\text { onto }} X$.

Proposition

(i) If X is countable and $A \subseteq X$, then A is countable.
(ii) A set $X(\neq \phi)$ is countable iff the elements of X can be arranged in infinite sequence $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.
(iii) If $X \& Y$ are countable, then $X \times Y$ is countable.

Countable Sets

Definition

(i) Let $J_{n}=\{1,2,3, \cdots, n\}$. A set X is said to be finite iff either $X=\phi$ or \exists for some $n \in \mathbb{N}$ and $f: J_{n} \rightarrow X$ s/t f is bijective. In the latter case, $\# X=n$.
(ii) A set X is said to be infinite if it is not finite.
(iii) A set X is said to be countable (enumerable) iff either X is finite or \exists a bijection $f: \mathbb{N} \xrightarrow{\text { onto }} X$.

Proposition

(i) If X is countable and $A \subseteq X$, then A is countable.
(ii) A set $X(\neq \phi)$ is countable iff the elements of X can be arranged in infinite sequence $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$.
(iii) If $X \& Y$ are countable, then $X \times Y$ is countable.

More generally, if $X_{1}, X_{2}, \cdots, X_{k}$ are finitely many countable sets then $X_{1} \times X_{2} \times \cdots \times X_{k}$ is also countable.

Countable Sets

Proposition

(®) If $\left\{X_{n}: n \in \mathbb{N}\right\}$ is a countable collection of countable set then $\cup_{n=1}^{\infty} X_{n}$ is countable, i.e. countable union of countable sets is countable.
(10) The set of all rationals, \mathbb{Q}, is countable.

Countable Sets

Theorem

The set of all integers Z, is a countably infinite set.

Countable Sets

Theorem

The set of all integers Z, is a countably infinite set.

Proof.

Define a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ as follows:

$$
f(n)=\left\{\begin{array}{cl}
0, & \text { when } n=1 \\
\frac{n}{2}, & \text { when } n \text { is even } \\
-\frac{n-1}{2}, & \text { when } n \text { is odd \& } n>1
\end{array}\right.
$$

Countable Sets

Theorem

Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

Countable Sets

Theorem

Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

Proof.

$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	\ldots
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	\ldots
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	\ldots
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	\cdots

Countable Sets

Theorem

Prove that $\mathbb{N} \times \mathbb{N}$ is countable.

Proof.

$(0,0)$	$(1,0)$	$(2,0)$	$(3,0)$	\cdots
$(0,1)$	$(1,1)$	$(2,1)$	$(3,1)$	\cdots
$(0,2)$	$(1,2)$	$(2,2)$	$(3,2)$	\cdots
$(0,3)$	$(1,3)$	$(2,3)$	$(3,3)$	\cdots

$$
\{(0,0),(0,1),(1,0),(0,2),(1,1),(2,0), \ldots\}
$$

Prove that set of positive rational numbers is countable.

Countable \& Uncountable Sets

Theorem

$[0,1]$ is uncountable and hence \mathbb{R} is uncountable.

Countable \& Uncountable Sets

Theorem

$[0,1]$ is uncountable and hence \mathbb{R} is uncountable.

Theorem

Let X be any countable set and $f: X \rightarrow Y$ be a surjection. Then Y is also countable.

Countable \& Uncountable Sets

Theorem

$[0,1]$ is uncountable and hence \mathbb{R} is uncountable.

Theorem

Let X be any countable set and $f: X \rightarrow Y$ be a surjection. Then Y is also countable.

Exercise

Let $X(\neq \phi)$ be a countable set. Then the collection of all finite sequence of elements of X is also countable. The collection of all finite subset of X is also countable.

Countable \& Uncountable Sets

Definition

An element $x \in \mathbb{C}$ is said to be algebraic number (or algebraic integer) iff it satisfies a polynomial equations

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0
$$

with rational (or integer) coefficient ($a_{n} \neq 0$).

Exercise

Show that the set of all algebraic numbers is countable and contains \mathbb{Q}.

Countable \& Uncountable Sets

Definition

An element $x \in \mathbb{C}$ is said to be algebraic number (or algebraic integer) iff it satisfies a polynomial equations

$$
a_{0}+a_{1} x+\cdots+a_{n} x^{n}=0
$$

with rational (or integer) coefficient ($a_{n} \neq 0$).

Exercise

Show that the set of all algebraic numbers is countable and contains \mathbb{Q}.

Exercise

Let X be any infinite set. Then \exists a countably infinite subset T of X s/t there is a bijection from $X \backslash T$ onto X.

Countable \& Uncountable Sets

Exercise

If X be a finite set and $f: X \rightarrow X$ is surjective (or injective) then f is bijective.

Countable \& Uncountable Sets

Exercise

If X be a finite set and $f: X \rightarrow X$ is surjective (or injective) then f is bijective.

Exercise

Construct counter examples to prove that the above is not true for both the cases if X is a infinite set.

Countable \& Uncountable Sets

Example

(1) Consider the function $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\begin{aligned}
& f(1)=1 \quad=f(2) \\
& f(n)=n-1
\end{aligned} \quad \forall n \geq 3
$$

Then f is surjective but not injective.
(1) Consider the function $g: \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
g(n)=n+1
$$

Then g is injective but not surjective.

Countable \& Uncountable Sets

Theorem

Schröder-Bernstine If A, B be non-void sets, $f: A \rightarrow B$ be an injective

Countable \& Uncountable Sets

Example

Show that there is a bijection $f:[0,1] \xrightarrow{\text { onto }}(0,1)$.

Countable \& Uncountable Sets

Example

Show that there is a bijection $f:[0,1] \xrightarrow{\text { onto }}(0,1)$.

Solution

Consider the mapping $h:(0,1) \rightarrow[0,1]$ given by $x \mapsto x$. Then h is injection.
Define $g:[0,1] \rightarrow(0,1)$ given by $x \mapsto \frac{1}{2} x+\frac{1}{4}$.
Then g is injection.
So by Schröder-Bernstine theorem \exists a bijection $f:[0,1] \xrightarrow{\text { onto }}(0,1)$.

Countable \& Uncountable Sets

Exercise

Show that there is a bijection $f: \mathbb{R} \rightarrow(-1,1)$

Exercise

Show that if I be any non-degenerate interval of \mathbb{R} then there is a bijection of \mathbb{R} onto I.

Countable \& Uncountable Sets

- Let X is a finite set of n elements then $|X|=n$. The concept of countability accommodates more infinite sets for determination of their cardinality; e.g., $|\mathbb{N}|=|\mathbb{Q}|=\boldsymbol{\aleph}_{0}$. The cardinal number \aleph_{0} or c of an infinite set X asserts that the set is countable or uncountable, respectively.
- The cardinal number of an infinite set is called a transfinite cardinal number.

Proposition

\aleph_{0} is the smallest transfinite cardinal number.

Countable \& Uncountable Sets

Continuum Hypothesis

We know the existence of three distinct transfinite cardinal numbers \aleph_{0}, c, and 2^{c} s/t $\aleph_{0}<c<2^{c}$. We now state the following natural questions which are still unsolved:

Problem

Unsolved Problem 1: Does there exist any cardinal number $\alpha \mathrm{s} / \mathrm{t}$ $\boldsymbol{\aleph}_{0}<\alpha<c$?

Problem

Unsolved Problem 2: Does there exist any cardinal number β s/t $c<\beta<2^{c}$?

The End

Thanks a lot for your attention!

