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Disclaimers

1
All the pictures used in this presentation are taken from freely available
websites.

2
If there is a reference on a slide all the information on that slide is
attributable to that source whether quotation marks are used or not.
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Introduction

What is Discrete Mathematics?

Discrete mathematics is the part of mathematics devoted to the
study of discrete (as opposed to continuous) objects.

Examples of discrete objects: integers, steps taken by a
computer program, distinct paths to travel from point A to point B
on a map along a road network, . . . .

It describes a collection of branches of mathematics with the
common characteristic that they focus on the study of things
consisting of separate, often finite parts.

It is essential for developing logic and problem-solving abilities.

A course in discrete mathematics provides the mathematical
background needed for all subsequent courses in computer
science and for all subsequent courses in the many branches of
discrete mathematics.
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Introduction

Types of Problems We Solve Using Discrete Maths

How many ways can you choose a password following specific
rules?

How many valid Internet addresses are there?
How can we prove that there are infinitely many prime numbers?
What is the last digit of 32023?
Which is larger, 3400 or 4300?
How can a list of integers be sorted so that the integers are in
increasing order?
Is there a link between two computers in a network?
How can I encrypt a message so that no unintended recipient can
read it?
What is the shortest path between two cities using a
transportation system?
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Introduction

Goals of This Course

Mathematical Reasoning: Ability to read, understand, and
construct mathematical arguments and proofs.

Combinatorial Analysis: Techniques for counting objects of
different kinds.

Discrete Structures: Abstract mathematical structures that
represent objects and the relationships between them. Examples
are sets, permutations, relations, graphs, and trees.
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Introduction

Goals of This Course

Algorithmic Thinking: One way to solve many problems is to
specify an algorithm.

An algorithm is a well-defined computational procedure that takes
a variable input and halts with an output.

Algorithmic thinking involves specifying algorithms, analyzing the
memory and time required by an execution of the algorithm, and
verifying that the algorithm will produce the correct answer.
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Introduction

Discrete Maths in CS, Maths, . . .

Computer Science:

Computer Architecture, Data Structures,
Algorithms, Programming Languages, Compilers, Computer
Security, Theory of Computation, Networking, . . .

Mathematics: Logic, Set Theory, Number Theory, Abstract
Algebra, Combinatorics, Graph Theory, Probability, Game Theory,
Network Optimization, . . .

The concepts learned will also be helpful in continuous areas of
mathematics.

Other Disciplines: It is also useful in courses in philosophy,
economics, linguistics, and other disciplines.
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The Foundations: Logic and Proofs Propositional Logic
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The Foundations: Logic and Proofs Propositional Logic

Propositions

Definition
A proposition is a declarative sentence that is either true or false never
both or in between.

Example (Propositions)

1 The ground sinking in Joshimath has spiked at an alarming rate over the past
few days.

2 Guwahati is the capital of Assam
3 210 × 315 = 615

4 x + 3 = 7.

Example (Not Propositions)

1 What is the time now?
2 x + y = z
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The Foundations: Logic and Proofs Propositional Logic

Propositional Logic

The rules of logic give precise meaning to mathematical
statements.

These rules are used to distinguish between valid and invalid
mathematical arguments.

A major goal of Discrete Maths is to learn how to understand and
how to construct correct mathematical arguments

We begin our study of discrete mathematics with an introduction
to logic.

In mathematics, ‘logic’ is used to refer to a particular type of formal
reasoning.
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The Foundations: Logic and Proofs Propositional Logic

Propositional Logic

Constructing Propositions
Propositional Variables: p, q, r, s, . . .

The proposition that is always true is denoted by T and the
proposition that is always false is denoted by F.

Compound Propositions – constructed from logical connectives
and other propositions

Negation ¬
Conjunction ∧
Disjunction ∨
Implication→ or =⇒
Biconditional↔ or ⇐⇒
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The Foundations: Logic and Proofs Propositional Logic

Compound Propositions: Negation

Many mathematical statements are constructed by combining one or
more propositions. New propositions, called compound propositions,
are formed from existing propositions using logical operators.

The negation of a proposition p is denoted by ¬p

p ¬p
T F
F T

Table: Truth Table

Example

p – you are students of 2nd year B.Tech

¬p – you are not students of 2nd year B.Tech

Remark: Other notations for negation are p̄,∼ p,−p,N p, p′ or !p.
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The Foundations: Logic and Proofs Propositional Logic

Conjunction

The conjunction of propositions p and q is denoted by p ∧ q

p q p ∧ q
T T T
T F F
F T F
F F F

Table: Truth Table

Example
p – you are attending this lecture
q – it is sunny today
p ∧ q – you are attending this lecture and it is sunny today
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The Foundations: Logic and Proofs Propositional Logic

Disjunction

The conjunction of propositions p and q is denoted by p ∨ q

p q p ∨ q
T T T
T F T
F T T
F F F

Table: Truth Table

Example
p – you are attending this lecture
q – you are watching your mobile
p ∨ q – you are attending this lecture or watching your mobile
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The Foundations: Logic and Proofs Propositional Logic

Inclusive or/Exclusive or (Xor)

In English ‘or’ has two distinct meanings.

Inclusive or – “Students who have taken Theory of Computation or
Cryptography class may take this class,"

we assume that students need to have taken one of the
prerequisites, but may have taken both.

This is the meaning of disjunction.

Exclusive or (Xor) – “Soup or salad comes with the main course of
your lunch," you do not expect to be able to get both soup and
salad.

This is the meaning of Exclusive Or (Xor).

It is denoted by ⊕. E.g., p ⊕ q, one of p and q must be true, but not
both.
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prerequisites, but may have taken both.

This is the meaning of disjunction.

Exclusive or (Xor) – “Soup or salad comes with the main course of
your lunch,"

you do not expect to be able to get both soup and
salad.

This is the meaning of Exclusive Or (Xor).

It is denoted by ⊕. E.g., p ⊕ q, one of p and q must be true, but not
both.
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The Foundations: Logic and Proofs Propositional Logic

Exclusive or (Xor)

A B A ⊕ B
T T F
T F T
F T T
F F F

Table: Truth Table

Theorem

p ⊕ q ⇐⇒ (p ∧ ¬q) ∨ (¬p ∧ q).
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The Foundations: Logic and Proofs Propositional Logic

Conditional Statements: Implication

If p and q are propositions, then p⇒ q is a conditional statement
or implication which is read as “if p, then q".

The conditional statement p⇒ q is false when p is true & q is
false, and true otherwise.

p q p⇒ q
T T T
T F F
F T T
F F T

Table: Truth Table

In p⇒ q, p is called the hypothesis and q is called the conclusion.
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The Foundations: Logic and Proofs Propositional Logic

Understanding Implication

If n is an even integer, then n = 2 · k, where k ∈ Z.

In p⇒ q there does not need to be any connection between the
hypothesis or the conclusion.
The “meaning" of p⇒ q depends only on the truth values of p and
q.

These implications are perfectly fine, but would not be used in
ordinary English.

If color the moon is green, then you have more money than Gautam
Adani.

If 1 + 1 = 3, then you are presently in Nepal for trekking.

One way to view the logical conditional is to think of an obligation
or contract.

If you get 85% on the final, then you will get an A grade.
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The Foundations: Logic and Proofs Propositional Logic

Understanding Implication

An implication can be expressed in several different ways.

1 If the student is good in mathematics, then he is humble.

2 The student is humble, if he is good in mathematics.
3 The student is good in mathematics implies that he is humble.
4 The student is good in mathematics only if he is humble.
5 To be humble is necessary for the student to be good in

mathematics.
6 The student’s being good in mathematics is sufficient to conclude

that he is humble.
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The Foundations: Logic and Proofs Propositional Logic

Understanding Implication

Observation

For two statements S and T the following convey the same meaning:

(i) If S then T .
(ii) T if S .

(iii) S implies T .
(iv) S only if T .
(v) T is necessary for S .
(vi) S is sufficient for T .

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Logic, Proofs, and Counting July 20, 2023 25 / 83



The Foundations: Logic and Proofs Propositional Logic

Understanding Implication

Observation

For two statements S and T the following convey the same meaning:

(i) If S then T .
(ii) T if S .
(iii) S implies T .
(iv) S only if T .

(v) T is necessary for S .
(vi) S is sufficient for T .

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Logic, Proofs, and Counting July 20, 2023 25 / 83



The Foundations: Logic and Proofs Propositional Logic

Understanding Implication

Observation

For two statements S and T the following convey the same meaning:

(i) If S then T .
(ii) T if S .
(iii) S implies T .
(iv) S only if T .
(v) T is necessary for S .
(vi) S is sufficient for T .

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Logic, Proofs, and Counting July 20, 2023 25 / 83



The Foundations: Logic and Proofs Propositional Logic

Converse, Contrapositive, and Inverse

From p⇒ q we can form new conditional statements

q⇒ p is the converse of p⇒ q

¬q⇒ ¬p is the contrapositive of p⇒ q

¬p⇒ ¬q is the inverse of p⇒ q

We first show that the contrapositive, ¬q⇒ ¬p, of a conditional
statement p⇒ q always has the same truth value as p⇒ q.
Note that the contrapositive is false only when

¬p is false and ¬q is true, that is, only when p is true and q is false.

Neither the converse, p⇒ q, nor the inverse, ¬p⇒ ¬q, has the
same truth value as p⇒ q for all possible truth values of p and q.
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The Foundations: Logic and Proofs Propositional Logic

Converse

Consider the two implications
(i) If the student is sincere, then he is humble.
(ii) If the student is humble, then he is sincere.

The conjunction of (i) and (ii) is written as
The student is humble if and only if he is sincere.

Example
For real numbers x and a > 0, consider the statements “|x| < a" and
“x ∈ (−a, a)".
Then the two statements “if |x| < a, then x ∈ (−a, a)" and “if x ∈ (−a, a),
then |x| < a" are converses of each other.

Note that the two statements can also be written as

|x| < a⇔ x ∈ (−a, a)
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The Foundations: Logic and Proofs Propositional Logic

Converse, Contrapositive, and Inverse

When two compound propositions always have the same truth
values, regardless of the truth values of its propositional variables,
we call them equivalent.

Hence, a conditional statement and its contrapositive are
equivalent.

The converse and the inverse of a conditional statement are also
equivalent.
However neither is equivalent to the original conditional statement.

Theorem

p⇒ q⇔ ¬p ∨ q.
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The Foundations: Logic and Proofs Propositional Logic

Biconditional/Equivalence

If p and q are propositions, then we can form the biconditional
proposition p⇔ q , read as

“p if and only if ( or iff) q".

p q p⇔ q
T T T
T F F
F T F
F F T

Table: Truth Table

Some alternative ways “p iff q" is expressed in English:

p is necessary and sufficient for q
if p then q, and conversely
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The Foundations: Logic and Proofs Propositional Logic

Propositional Logic

Example Name Meaning

¬p Negation Not p
p ∨ q (Inclusive) Or Either p or q or both
p ∧ q And Both p and q
p ⊕ q XOR Either p or q, but not both
p⇒ q Implies If p, then q
p⇔ q / Biconditional / p if and only if q
p ⇐⇒ q Equivalence
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The Foundations: Logic and Proofs Propositional Logic

Truth Tables for Compound Propositions

A truth table presents the truth values of a compound propositional
formula in terms of the truth values of the components.

Precedence of Logical Operators

Operator Precedence
¬ 1
∧ 2
∨ 3
⇒ 4
⇔ 5

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Logic, Proofs, and Counting July 20, 2023 31 / 83



The Foundations: Logic and Proofs Propositional Logic

Example of Truth Table

Construct a truth table for p ∨ q⇒ ¬r

p q r ¬r p ∨ q p ∨ q⇒ ¬r

T T T F T F
T T F T T T
T F T F T F
T F F T T T
F T T F T F
F T F T T T
F F T F F T
F F F T F T
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The Foundations: Logic and Proofs Propositional Logic

Tautologies, Contradictions, and Contingencies

Definition
A tautology is a proposition which is always true.

p ∨ ¬p

A contradiction is a proposition which is always false.

p ∧ ¬p

A contingency is a proposition which is neither a tautology nor a
contradiction.
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The Foundations: Logic and Proofs Propositional Logic

De Morgan’s Laws

¬(p ∧ q) ≡ ¬p ∨ ¬q

¬(p ∨ q) ≡ ¬p ∧ ¬q

Truth table for De Morgan’s Second Law:

p q ¬p ¬q (p ∨ q) ¬(p ∨ q) ¬p ∧ ¬q
T T F F T F F
T F F T T F F
F T T F T F F
T F T T F T T
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The Foundations: Logic and Proofs Propositional Logic

Key Logical Equivalences

Identity Laws: p ∧ T ≡ p, p ∨ F ≡ p

Domination Laws: p ∨ T ≡ T , p ∧ F ≡ F

Idempotent laws: p ∧ p ≡ p, p ∨ p ≡ p

Double Negation Law: ¬(¬p) ≡ p

Negation Laws: p ∨ ¬p ≡ T , p ∧ ¬p ≡ F

Commutative Laws: p ∨ q ≡ q ∨ p, p ∧ q ≡ q ∧ p
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The Foundations: Logic and Proofs Propositional Logic

Key Logical Equivalences

Associative Laws: (p ∧ q) ∧ r ≡ p ∧ (q ∧ r)
(p ∨ q) ∨ r ≡ p ∨ (q ∨ r)

Distributive Laws: (p ∨ (q ∧ r)) ≡ (p ∨ q) ∧ (p ∨ r)
(p ∧ (q ∨ r)) ≡ (p ∧ q) ∨ (p ∧ r)

Absorption Laws: p ∨ (p ∧ q) ≡ p
p ∧ (p ∨ q) ≡ p
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The Foundations: Logic and Proofs Propositional Logic

Logic Puzzles

In Lucknow, there are two kinds of inhabitants, Type-1, who
always tell the truth, and Type-2, who always lie.

You come to Lucknow and meet A and B.

A says “B is a Type-1."

B says “The two of us are of opposite types."

Exercise
What are the types of A and B?
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The Foundations: Logic and Proofs Propositional Logic

Logic Puzzles
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The Foundations: Logic and Proofs Proofs

Outline

1 Introduction
Syllabus

References
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Direct Proof
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Constructive Proofs, Counterexamples, and Vacuous Proofs

3 Counting
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The Foundations: Logic and Proofs Proofs

Proofs of Mathematical Statements

A proof is a valid argument that establishes the truth of a
statement.

In math, CS, and other disciplines, informal proofs which are
generally shorter, are generally used.

More than one rule of inference are often used in a step.
Steps may be skipped.
The rules of inference used are not explicitly stated.
Easier for to understand and to explain to people.
However, it is also easier to introduce errors.

Proofs have many practical applications:

verification that computer programs are correct
establishing that operating systems are secure
enabling programs to make inferences in artificial intelligence
showing that system specifications are consistent
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The Foundations: Logic and Proofs Proofs

Some Terminology

A theorem

is a statement that can be shown to be true using:

definitions
other theorems
axioms (statements which are given as true)
rules of inference

A lemma is a ‘helping theorem’/‘little theorem‘ or a result which is
needed to prove a theorem.

A corollary is a result which follows directly from a theorem.

Less important theorems are sometimes called propositions.
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The Foundations: Logic and Proofs Proofs

Some Terminology

A conjecture

is a statement that is being proposed to be true.
Once a proof of a conjecture is found, it becomes a theorem. It
may turn out to be false.

A proof is an argument that begins with a proposition and
proceeds using logical rules to establish a conclusion.
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The Foundations: Logic and Proofs Proofs

Conversion of Plain English into Mathematical Form

Example
Everybody loves somebody

For every person A, there is a person B such that (or 3) A loves B.

or

There is a person B such that for every person A, A loves B.

The phrases ‘for all’, ‘for any’, ‘for every’, ‘for some’, & ‘there
exists’ are called quantifiers

Their careful use is an important part in mathematics.

The symbol ∀ stands for ‘for all’, ‘for any’, or ‘for every’

The symbol ∃ stands for ‘there exists’ or ‘for some’.
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The Foundations: Logic and Proofs Proofs

Conversion of Plain English into Mathematical Form

Example
(i) S 1 : In every shelf in the library there is a mathematics book.
(ii) S 2 : There is a shelf in the library in which all books are story

books.

Notice that each of the statements involves two quantifiers.
If we denote the set of shelves in the library by X, then the
statement S 1 can be written as

“∀ s ∈ X (there is a mathematics book in s)".
“There is a mathematics book in s" itself is a statement with the
existential quantifier.
For a given shelf s, let us denote by Bs the set of books in the shelf
s.
∃ b ∈ Bs (b is a mathematics book)
∀ s ∈ X (∃ b ∈ Bs (b is a mathematics book)).
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The Foundations: Logic and Proofs Proofs

Conversion of Plain English into Mathematical Form

Thus,

S 1 : In every shelf in the library there is a mathematics book.

S 1 : ∀ s ∈ X (∃ b ∈ Bs (b is a mathematics book)).

S 2 : There is a shelf in the library in which all books are story books.

S 2 : ∃ s ∈ X (∀ b ∈ Bs (b is a story book)).

Negate the statements S 1 and S 2

not-S 1 : ∃ s ∈ X (∀ b ∈ Bs (b is not a mathematics book)).

There is a shelf in the library in which each of the book is a non-mathematics
book

not-S 2 : ∀ s ∈ X (∃ b ∈ Bs (b is a non-story book))

Given any shelf in the library, it has a non-story book
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The Foundations: Logic and Proofs Proofs

Forms of Theorems

Many theorems assert that a property holds for all elements in a
domain
Often the universal quantifier (needed for a precise statement of a
theorem) is omitted by standard mathematical convention.

Example
The statement:
If x > y > 1, where x & y are positive real numbers, then x2 > y2

really means

For all positive real numbers x & y, if x > y > 1, then x2 > y2.
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The Foundations: Logic and Proofs Proofs

Proving Theorems

Many theorems have the form:

∀ x (P(x)⇒ Q(x))

To prove them, we show that where c is an arbitrary element of the
domain,

P(c)⇒ Q(c)

By universal generalization the truth of the original formula follows.
So, we must prove something of the form: p⇒ q.

Theorem
Every odd integer is equal to the difference between the squares of
two integers.
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The Foundations: Logic and Proofs Proofs

Methods of Proof

Direct Proof

Proof by Contradiction

Proof by Contrapositive

Constructive Proofs, Counterexamples, and Vacuous Proofs

Mathematical Induction

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Logic, Proofs, and Counting July 20, 2023 48 / 83



The Foundations: Logic and Proofs Proofs

Direct Proof

To prove a statement of the form “if A, then B" directly, begin by
assuming that A is true.

Then, making use of axioms, definitions, previously proven
theorems, and rules of inference, proceed directly until B is
reached as a conclusion.

Direct proofs are most easily employed when establishing the
general form of the antecedent is straightforward.
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The Foundations: Logic and Proofs Proofs

Example

Theorem
The square of an integer is odd if and only if the integer itself is odd.

For any integer n, n2 is odd iff n is odd.

The statement “n2 is odd iff n is odd" is really two statements in one:

1 if n is odd then n2 is odd
2 if n2 is odd then n is odd
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Example
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The Foundations: Logic and Proofs Proofs

Proof by Contradiction

The technique known as proof by contradiction is one type of
indirect proof.

In a proof by contradiction, in order to prove a statement of the
form “If A, then B", one assumes that both A and ¬B are true.

The goal is then to reach a contradiction, which allows one to
conclude that A and ¬B can never both be true.

That is, whenever A is true, B must also be true.

This method of proof is useful when assuming ¬B allows you to
easily utilize a definition or theorem.
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The Foundations: Logic and Proofs Proofs

Example

Only if part of previous theorem:

Proof.

Now, we have to show that if n2 is odd, then n must be odd.

Suppose this is not true for all n, and that n is a particular integer s/t n2 is odd but n is
not odd.

Now if n is even, we can write n = 2k where k ∈ Z

n2 = (2k)2

= 4k2

= 2(2k2)
= 2. j, where j = 2k2

Thus, n2 is even which contradicts our assumption.

That is, the assumption, n is an integer s/t n2 is odd but n is not odd, was false.
So its negation is true: if n2 is odd, then n is odd. �
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Corollary

Corollary

If n is odd, then n4 is odd.

Proof.

Note that n4 = (n2)2 .

Since n is odd, by previous theorem, n2 is also odd.

Then since n2 is odd, again the theorem, n4 is odd. �
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The Foundations: Logic and Proofs Proofs

Proof by Contrapositive

Proof by contrapositive makes use of the fact, which relies on the
equivalence of an implication with its contrapositive.

The proof begins by assuming ¬B is true.

Referencing axioms, definitions, previously proven theorems, and
rules of inference, the proof ultimately reaches the conclusion that
¬A is true.

In other words, this is a direct proof on the contrapositive of the
original statement A⇒ B.
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Example

Theorem
Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Proof.
1 The first step in a proof by contraposition is to assume that the

conclusion of the conditional statement “If 3n + 2 is odd, then n is
odd" is false.

2 Then n = 2k for some k ∈ Z.
3 We find that 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1).
4 This tells us that 3n + 2 is even.
5 This is the negation of the premise of the theorem.

We have proved that if 3n + 2 is odd, then n is odd. �
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The Foundations: Logic and Proofs Proofs

Constructive Proofs

While proofs of universally quantified statements are more
commonly encountered, knowing how to prove an existentially
quantified statement is essential.

Recall that an existentially quantified statement simply makes a
claim about the existence of a particular entity.

If a single example of the desired object can be produced, the
statement has been proven.

Such a proof is often called a constructive proof.
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Example

Exercise
Prove that there exists an integer n s/t

n2 + n
3n + 8

= 1.

Solution
First Thoughts – find such n

Prove the statement for those n.
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The Foundations: Logic and Proofs Proofs

Counterexamples

One is presented with a statement that may or may not be true
and is asked to prove or disprove the given statement.

In this case, experimentation may be required in order to decide
whether to attempt a proof or a disproof.

To disprove a universally quantified statement, providing a single
counterexample is sufficient.

Thus disproof of a universally quantified statement is constructive.

On the other hand, disproving an existentially quantified statement
amounts to proving a quantified statement:

one must show that the given statement does not hold for any
elements of the domain of discourse.
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The Foundations: Logic and Proofs Proofs

Example

Exercise

Prove that the irrational numbers are not closed under multiplication.

Solution

First Thoughts. The statement p : irrational numbers are closed under multiplication
is a universal statement.

¬p : It is not the case that the irrational numbers are closed under multiplication.

This means the given statement is logically equivalent to an existential statement.

We can prove it false if we can produce two irrational numbers whose product is
rational.

Let x =
√

2 & y =
√

8. Then x & y are both irrational, but xy = 4 is rational.

Thus the irrational numbers are not closed under multiplication.
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The Foundations: Logic and Proofs Proofs

Counterexamples

In summary,

A single example cannot prove a universally quantified statement
(unless the domain of discourse contains only one element);

a single counterexample can disprove a universally quantified
statement;

a single example can prove an existentially quantified statement;

a single counterexample cannot disprove an existentially
quantified statement (unless the domain of discourse contains
only one element).

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Logic, Proofs, and Counting July 20, 2023 61 / 83



The Foundations: Logic and Proofs Proofs

Counterexamples

In summary,

A single example cannot prove a universally quantified statement
(unless the domain of discourse contains only one element);

a single counterexample can disprove a universally quantified
statement;

a single example can prove an existentially quantified statement;

a single counterexample cannot disprove an existentially
quantified statement (unless the domain of discourse contains
only one element).

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Logic, Proofs, and Counting July 20, 2023 61 / 83



The Foundations: Logic and Proofs Proofs

Vacuous Proofs

Now, we consider the situation in which a statement of the form “if
A, then B" is to be proven, but the statement A is never true.

Since a conditional statement is always true when the antecedent
is false.

We would regard such a statement as vacuously true.
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Example

Exercise

For all x ∈ R, if x2 < 0 then 3x2 + 5 = −7x

Solution

For any x ∈ R, x2 ≥ 0.

Thus, since the antecedent (x2 < 0) is always false, the implication is
vacuously true.
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Proof by Mathematical Induction

Mathematical induction is an important proof technique, and it is often
used to establish the truth of a statement for all natural numbers.

Example

Show that the sum of the first n natural numbers
∑n

i=1 i = n(n+1)
2

Solution
1 First, we consider the case when n = 1 and clearly 1 = 1.(1+1)

2 .
2 Next, we assume that it is true for n = k, i.e.,

1 + 2 + . . . + k =
k(k + 1)

2

3 Prove it for n = k + 1
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The Foundations: Logic and Proofs Proofs

Proof by Mathematical Induction

Mathematical induction is an important proof technique, and it is often
used to establish the truth of a statement for all natural numbers.

There are three parts to a proof by induction:
the base step
the induction hypothesis
the induction step

In the base step, we show that the statement is true for some natural
number (usually the number 1).

In the induction hypothesis, we assume the statement is true for some
natural number n = k.
In the induction step, we have to prove that the statement is true for its
successor n = k + 1. This is often written as P(k)⇒ P(k + 1).

[P(1) ∧ ∀k (P(k)⇒ P(k + 1))]⇒ ∀n P(n).
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Proof by Mathematical Induction

Proposition
Every integer greater than 1 can be written as the product of prime
numbers.

Proof.
Let P(n) be the statement that n can be written as the product of
prime numbers.
P(n) is true for each integer greater or equal to 2.
For n = 2, P(n) is true.
Now, assume that for some k ≥ 2, each integer n with 2 ≤ n ≤ k
may be written as a product of primes. We need to prove that k + 1
is a product of primes.

�
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Proof by Mathematical Induction

Proof.
Case (a): Suppose k + 1 is a prime. Then we are done.

Case (b): Suppose k + 1 is a not prime. Then by our assumption,
∃ integers a & b with 2 ≤ a, b ≤ k s/t

k + 1 = a · b.

By the strong inductive hypothesis, since 2 ≤ a, b ≤ k, both a & b
are the product of primes. Thus,

k + 1 = a · b is the product of primes.

This is proved by strong induction. �
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Mathematical Induction

Induction

Math Induction

StrongWeak

Definition
Weak Induction: [P(1) ∧ ∀ k (P(k)⇒ P(k + 1))]⇒ ∀ n P(n).

Strong Induction:
[P(1) ∧ ∀ k(P(1) ∧ P(2) ∧ . . . ∧ (P(k)⇒ P(k + 1))]⇒ ∀ n P(n).
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Importance of Base Step

Example
Consider a statement P(n) as 2 + 4 + . . . + 2n = (n + 2)(n − 1).
P(2) is true.

Show that if P(k) is true, then P(k + 1) is also true.
However, the base case P(1) is false.

Note:

Observe that P(1) is true

Let k ≥ 1 and assume that P(k) is true. Show that P(k + 1) is true.
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The Foundations: Logic and Proofs Proofs

Importance of Base Step

Let us try to prove n + 1 < n ∀ n ∈ N.

First we assume that the above inequality is true for n = k for some
k ∈ N, i.e.,

k + 1 < k.

Now, we try to prove this is true for n = k + 1.

(k + 1) + 1 < k + 1

k + 2 < k + 1

Thus, induction step is true.
However, it is not true for n = 1.

Thus, the given inequality is not true.
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The Foundations: Logic and Proofs Proofs

Arbitrary Base Step

Definition
Let A ⊂ Z and N ∈ Z. Assume that

(i) N ∈ A
(ii) for k ≥ N, k ∈ A implies k + 1 ∈ A.

With this definition, n = N is the base case.
Note that with N = 1 we get the first condition of the principle.

Exercise
Prove that n! > 2n for all positive integers n ≥ 4. (The base case here is
4.)
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Counting

Basic Counting Principles: The Product Rule

The Product Rule: A procedure can be broken down into a sequence
of two tasks.

There are n1 ways to do the first task and n2 ways to do the
second task.

Then there are n1 × n2 ways to do the procedure.

Example
How many different number plates can be made if each plate contains
a sequence of 2 uppercase English letters followed by 4 digits?

Solution

There are 262 × 104 many different number plates
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Counting

Counting Functions

Example
How many functions are there from a set with m elements to a set with
n elements?

Solution
There are n × n × . . . × n︸            ︷︷            ︸

m-times

= nm such functions.

Example
How many one-to-one functions are there from a set with m elements
to a set with n elements?

Solution
There are n(n − 1)(n − 2) . . . (n − m + 1) such functions.
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Counting

Basic Counting Principles: The Sum Rule

The Sum Rule: If a task can be done either in one of n1 ways or in one
of n2, where none of the set of n1 ways is the same as any of the n2
ways, then there are n1 + n2 ways to do the task.

Example
The IIITL must choose either a student from CS, a student from CSAI,
a student from CSAI, or a student from IT as a representative for
students’ committee.
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Counting

The Sum Rule

Counting Passwords

Exercise
A password consists of 6 to 8 characters, where each character is an
uppercase letter or a digit. Each password must contain at least one
digit. How many possible ways you can choose your passwords?
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Counting

Counting Passwords
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Counting

Basic Counting Principles: Subtraction Rule

Subtraction Rule: If a task can be done either in one of n1 ways or in
one of n2 ways,

then the total number of ways to do the task is n1 + n2 minus the
number of ways to do the task that are common to the two different
ways.

This is also known as, the principle of inclusion-exclusion:

|A ∪ B| = |A| + |B| − |A ∩ B|
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Counting

Counting Bit Strings

Exercise
How many bit strings of length 8 either start with a 1 bit or end with the
two bits 00?

Solution

Number of bit strings of length 8 that start with a 1 bit: 27 = 128

Number of bit strings of length 8 that end with bits 00: 26 = 64

Number of bit strings of length 8 that start with a 1 bit and end with
bits 00 : 25 = 32

Thus, the number is 128 + 64 − 32 = 160.
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Counting

The Pigeonhole Principle

Principle
If you want to place n pigeons into m pigeonholes, and n > m, then at
least one pigeonhole will contain more than one pigeon.

– familiar version

Proof.
Suppose none of the m pigeonholes, has more than one pigeon.

Then the total number of pigeons would be at most m.

This contradicts the statement that we have n pigeons and n > m.

Thus, our assumption was wrong. Hence proved!

�
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Counting

The Pigeonhole Principle

Corollary

A function f from a set with k + 1 elements to a set with k elements is not
one-to-one.

Example

Among any group of 366 people, there must be at least 2 having the same
birthday.

Problem
Let there be m + 1 people {P1, P2, . . . , Pm+1} in a room. What should be the
value of m so that the probability that atleast one of the persons
{P2, P3, . . . , Pm+1} shares birthday with P1 is greater than 1

2 ?

Problem

How many people must be there in a room, so that the probability of atleast 2 of them sharing the
same birthday is greater than 1

2 ?
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Counting

The Pigeonhole Principle

Theorem
Let A be a finite set, partitioned into finite subsets S 1, S 2, . . . , S m. If
|A| = n > m, then at least one of these m subsets contains more than
one element.

Principle (Generalized Pigeonhole)

If you want to place n pigeons into m pigeonholes with respective
capacities of c1, c2, . . . , cm and n > c1 + c2 + . . . + cm then at least one of
the pigeonholes will contain more pigeons than its capacity.

Principle (Extended Pigeonhole)

If you want to place n pigeons into m pigeonholes, then one of the
pigeonholes will contain at least b n−1

m c + 1 pigeons.
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Counting

The Pigeonhole Principle

Exercise
1 Prove that in any set of 99 natural numbers, there is a subset of 15

of them with the property that the difference of any two numbers in
the subset is divisible by 7.

2 There are 75 students in a class. Each got an A, B,C, or D on a
test. Show that there are at least 19 students who received the
same grade.
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Counting

The End

Thanks a lot for your attention!
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