Public Key Cryptography

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

December 23, 2022

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Disclaimers

All the pictures used in this presentation are taken from freely available websites.

2

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

3

Any mention of commercial products or reference to commercial organizations is for information only; it does not imply recommendation or endorsement nor does it imply that the products mentioned are necessarily the best available for the purpose.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

イロン 人間 とくほう イヨン

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption

4 PKC

- RSA
- ElGamal
- Elliptic Curve

Digital Signature

Digital Signature Algorithm (DSA)

< A >

Outline

Introduction to Public Key Cryptography

- Requirements to Design a PKC
- 3 Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption

4 PK

- RSA
- ElGamal
- Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

A Generic View of Public Key Crypto

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

< A >

A Generic View of Public Key Crypto

Advantages over symmetric-key

- Better key distribution and management
 - No danger that public key compromised
- 2 New protocols
 - Digital Signature
- Long-term encryption
- Only disadvantage:

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

A Generic View of Public Key Crypto

Advantages over symmetric-key

- Better key distribution and management
 - No danger that public key compromised
- 2 New protocols
 - Digital Signature
- Long-term encryption

Only disadvantage: much more slower than symmetric key crypto

Public Key Cryptography

Definition

PKC

A public key cryptosystem is a pair of families $\{E_k : k \in \mathcal{K}\}$ and $\{D_k : k \in \mathcal{K}\}$ of algorithms representing invertible transformations,

 $E_k: \mathcal{M} \to C \& D_k: C \to \mathcal{M}$

on a finite message space \mathcal{M} and ciphertext space \mathcal{C} , such that

- **D** for every $k \in \mathcal{K}$, D_k is the inverse of E_k and vice versa,
- for every $k \in \mathcal{K}$, $M \in \mathcal{M}$ and $C \in C$, the algorithms E_k and D_k are *easy* to compute.
- for almost every $k \in \mathcal{K}$, each easily computed algorithm equivalent to D_k is computationally infeasible to derive from E_k ,

for every $k \in \mathcal{K}$, it is feasible to compute inverse pairs E_k and D_k from k.

(日)

Definition

Computationally Infeasible

A task is computationally infeasible if either the time taken or the memory required for carrying out the task is finite but impossibly large.

・ロット (雪) (日) (日)

Definition

Computationally Infeasible

A task is computationally infeasible if either the time taken or the memory required for carrying out the task is finite but impossibly large.

Any computational task which takes $\ge 2^{112}$ bit operations, we say, it is computationally infeasible in present day scenario.

Dhananjoy Dey (Indian Institute of Informa

PKC

Introduction to Public Key Cryptography

Digital Signature

Signing a Message M

Message M

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

э

< A >

Introduction to Public Key Cryptography

Digital Signature

Signing a Message M

Digest *h*(*M*)

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

э

Image: A math

Introduction to Public Key Cryptography

Digital Signature

Signing a Message M

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Outline

Introduction to Public Key Cryptography

Requirements to Design a PKC

- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption

4 PK

- RSA
- ElGamal
- Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

One-way Function

Definition

Easy: \exists a polynomial-time algorithm that, on input $m \in A$ outputs c = f(m).

Definition

Hard: Every probabilistic polynomial-time algorithm trying, on input c = f(m) to find an inverse of $c \in B$ under f, may succeed only with negligible probability.

One-way Function

Definition

Easy: \exists a polynomial-time algorithm that, on input $m \in A$ outputs c = f(m).

Definition

Hard: Every probabilistic polynomial-time algorithm trying, on input c = f(m) to find an inverse of $c \in B$ under f, may succeed only with negligible probability.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Examples of One-way Function

- Cryptographic hash functions, viz., SHA-2 and SHA-3 (Keccak) family.
- The function

 $f : \mathbb{Z}_p \to \mathbb{Z}_p,$ $x \mapsto x^{2^{24}+17} + a_1 \cdot x^{2^{24}+3} + a_2 \cdot x^3 + a_3 \cdot x^2 + a_4 \cdot x + a_5,$ where $p = 2^{64} - 59$ and each $a_i \ (\in \mathbb{Z}_p)$ is 19-digit number for $1 \le i \le 5.$

・ロット (雪) ・ (ヨ) ・ (ヨ)

Trapdoor One-way Function easy B = f(A)A

・ロ・・ (日・・ モ・・

Trapdoor One-way Function

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Trapdoor One-way Function

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 13/94

(▲ 문) (▲ 문)

< < >> < <</>

Definition

A trapdoor one-way function is a one-way function $f : \mathcal{M} \to C$, satisfying the additional property that \exists some additional information or trapdoor that makes it easy for a given $c \in f(\mathcal{M})$ to find out $m \in \mathcal{M} : f(m) = c$, but without the trapdoor this task becomes hard.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 14/94

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 15/94

A B > A B >

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

$$IFP \stackrel{def}{=} \begin{cases} Input : n > 1 \\ Output : p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \end{cases}$$

-		
Lvam	nla	
LAAIII	סוס	

• Consider the number 37015031

Dhananjoy Dey (Indian Institute of Informa

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

$$IFP \stackrel{def}{=} \begin{cases} Input : n > 1 \\ Output : p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \end{cases}$$

Example

• Consider the number $37015031 = 6079 \times 6089$

Dhananjoy Dey (Indian Institute of Informa

< ロ > < 同 > < 回 > < 回 > < 回 > <

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

$$IFP \stackrel{def}{=} \begin{cases} Input : n > 1 \\ Output : p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \end{cases}$$

Example

- Consider the number $37015031 = 6079 \times 6089$
- Consider the number 96679789

Dhananjoy Dey (Indian Institute of Informa

・ロト ・同ト ・ヨト ・ヨト

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

$$IFP \stackrel{def}{=} \begin{cases} Input : n > 1 \\ Output : p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \end{cases}$$

Example

- Consider the number $37015031 = 6079 \times 6089$
- Consider the number 96679789= 9743 × 9923

Dhananjoy Dey (Indian Institute of Informa

(*) * (*) *)

• **Discrete Logarithm Problem:** Given an abelian group (G, .) and $g \in G$ of order *n*. Given $h \in G$ such that $h = g^x$ find x $(DLP(g, h) \rightarrow x)$. \rightarrow hard problem.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 16/94

< ロ > < 同 > < 回 > < 回 > :

• **Discrete Logarithm Problem:** Given an abelian group (*G*, .) and $g \in G$ of order *n*. Given $h \in G$ such that $h = g^x$ find *x* $(DLP(g, h) \rightarrow x)$. \rightarrow hard problem. The DLP over the multiplicative group $\mathbb{Z}_n^* = \{a : 1 \le a \le n, \gcd(a, n) = 1\}$. DLP may be defined as follows:

$$DLP \stackrel{def}{=} \begin{cases} Input & : x, y \in \mathbb{Z}_n^* \& n \\ Output & : k \ s/t \ y \equiv x^k \mod n \end{cases}$$

• **Discrete Logarithm Problem:** Given an abelian group (*G*, .) and $g \in G$ of order *n*. Given $h \in G$ such that $h = g^x$ find x(*DLP*(g, h) $\rightarrow x$). \rightarrow hard problem. The DLP over the multiplicative group $\mathbb{Z}_n^* = \{a : 1 \le a \le n, \gcd(a, n) = 1\}$. DLP may be defined as follows:

$$DLP \stackrel{def}{=} \begin{cases} Input & : x, y \in \mathbb{Z}_n^* \& n \\ Output & : k \ s/t \ y \equiv x^k \mod n \end{cases}$$

Example

• Let p = 97. Then \mathbb{Z}_{97}^* is a cyclic group of order n = 96. 5 is a generator of \mathbb{Z}_{97}^* . Now, $5^x \equiv 35 \mod 97$, find the value of x.

Dhananjoy Dey (Indian Institute of Informa

-

・ロッ ・雪 ・ ・ ヨ ・ ・

• **Discrete Logarithm Problem:** Given an abelian group (*G*, .) and $g \in G$ of order *n*. Given $h \in G$ such that $h = g^x$ find x(*DLP*(g, h) $\rightarrow x$). \rightarrow hard problem. The DLP over the multiplicative group $\mathbb{Z}_n^* = \{a : 1 \le a \le n, \gcd(a, n) = 1\}$. DLP may be defined as follows:

$$DLP \stackrel{def}{=} \begin{cases} Input & : x, y \in \mathbb{Z}_n^* \& n \\ Output & : k \ s/t \ y \equiv x^k \mod n \end{cases}$$

Example

• Let p = 97. Then \mathbb{Z}_{97}^* is a cyclic group of order n = 96. 5 is a generator of \mathbb{Z}_{97}^* . Now, $5^x \equiv 35 \mod 97$, find the value of x.

Dhananjoy Dey (Indian Institute of Informa

-

・ロッ ・雪 ・ ・ ヨ ・ ・

• Computational Diffie-Hellman Problem: Given $a = g^x$ and $b = g^y$ find $c = g^{xy}$. (*CDH*(g, a, b) $\rightarrow c$). \rightarrow hard problem.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 17/94

(日)

- Computational Diffie-Hellman Problem: Given $a = g^x$ and $b = g^y$ find $c = g^{xy}$. (*CDH*(g, a, b) $\rightarrow c$). \rightarrow hard problem.
- Elliptic Curve Discrete Logarithm Problem (ECDLP): \mathbb{E} denotes the collections of points on a elliptic curve and $P \in \mathbb{E}$. Let *S* be the cyclic subgroup of \mathbb{E} generated by *P*. Given $Q \in S$, find an integer *x* such that $Q = x.P. \rightarrow$ hard problem.

Dhananjoy Dey (Indian Institute of Informa

< ロ > < 同 > < 回 > < 回 > .

Outline

- Introduction to Public Key Cryptography
- 2 Requirements to Design a PKC

Origin of PKC

- Diffie Hellman Key Exchange Protocol
- Non-secret Encryption

4 PK

- RSA
- ElGamal
- Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

DH Key Exchange

э

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 19/94

★ E ► ★ E ►

DH Key Exchange

Alice

- 1. Alice generates a
- Alice's public value is g^a mod p
- 3. Alice computes $g^{ab} = (g^b)^a \mod p$

Since $g^{ab} = g^{ba}$ they now have a shared secret key usually called k (K = $g^{ab} = g^{ba}$)

Both parties know p and q

- 1. Bob generates b
- Bob's public value is *g^b* mod *p*
- 3. Bob computes $g^{ba} = (g^a)^b \mod p$

DH Key Exchange

- *k* is the shared secret key.
- Knowing g, $g^a \& g^b$, it is hard to find g^{ab} .
- Idea of this protocol: The enciphering key can be made public since it is computationally infeasible to obtain the deciphering key from enciphering key.
- This protocol was (supposed to be) the door-opener to PKC.

(*) * (*) *)

DH Key Exchange

- *k* is the shared secret key.
- Knowing g, $g^a \& g^b$, it is hard to find g^{ab} .
- Idea of this protocol: The enciphering key can be made public since it is computationally infeasible to obtain the deciphering key from enciphering key.
- This protocol was (supposed to be) the door-opener to PKC.
- PKCS #3 (Version 1.4): Diffie-Hellman Key-Agreement Standard, An RSA Laboratories Technical Note – Revised November 1, 1993.

・ロト ・同ト ・ヨト ・ヨト

Discrete Logarithm mod 23 to the Base 5

э

Dhananjoy Dey (Indian Institute of Informa

• Clifford Cocks, Malcolm Williamson & James Ellis developed Non-secret Encryption between 1969 and 1974.

Clifford Cocks, Malcolm Williamson, and James Ellis.

• All were at GCHQ, so this stayed secret until 1997.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

ヨトィヨト

Theorem

Suppose $m_1, m_2, \dots, m_r \in \mathbb{Z}^+$: $gcd(m_i, m_j) = 1$ for $i \neq j$. Then $x \equiv a_i \mod m_i$ has ! solution $\mod M(=\prod_{i=1}^r m_i)$, which is given by

$$x \equiv \sum_{i=1}^{r} a_i . M_i . y_i \mod M,$$

where $M_i = \frac{M}{m_i} \& y_i = M_i^{-1} \mod m_i$ for $1 \le i \le r$.

Dhananjoy Dey (Indian Institute of Informa

< ロ > < 同 > < 回 > < 回 > .

Problem

Find x s/t $x \equiv 5 \mod 7$, $x \equiv 3 \mod 11$, $x \equiv 10 \mod 13$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 24/94

Problem

Find x s/t $x \equiv 5 \mod 7$, $x \equiv 3 \mod 11$, $x \equiv 10 \mod 13$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 24/94

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 25/94

Non-secret Encryption

Key Generation

Select 2 large distinct primes p & q such that $p \nmid q - 1$ and $q \nmid p - 1$.

Public key: n = pq.

- **2** Find numbers r & s, $s/t p \cdot r \equiv 1 \mod (q-1)$ and $q \cdot s \equiv 1 \mod (p-1)$.
- Solution Find $u \And v$, s/t $u.p \equiv 1 \mod q$ and $v.q \equiv 1 \mod p$. Private key: (p, q, r, s, u, v).

・ロッ ・雪 ・ ・ ヨ ・ ・

Non-secret Encryption

Encryption

 $C \equiv M^n \mod n \text{ for } 0 \leq M < n.$

Decryption

Dhananjoy Dey (Indian Institute of Informa

э

문에 비문어

Modular Exponentiation by The Repeated Squaring I

Compute $b^n \mod m$

- Use *a* to denote the partial product.
- 2 We'll have $a \equiv b^n \mod m$.
- 3 We start out with a = 1.
- Let $n_0, n_1, \ldots n_{k-1}$ denote the binary digits of n, i.e.,

$$n = n_0 + 2n_1 + 4n_2 + \ldots + 2^{k-1}n_{k-1}.$$

- If $n_0 = 1$, change *a* to *b* (otherwise keep a = 1). Then set $b_1 = b^2 \mod m$
- If $n_1 = 1$, multiply *a* by b_1 (and reduce mod *m*); otherwise keep *a* unchanged.

• Next square b_1 , and set $b_2 = b_1^2 \mod m$

Modular Exponentiation by The Repeated Squaring II

- If $n_2 = 1$, multiply *a* by b_2 (and reduce mod *m*); otherwise keep *a* unchanged.
- Ocontinue in this way. You see that in the *j*-th step you have computed $b_j \equiv b^{2^j} \mod m$.
- If $n_j = 1$, i.e., if 2^j occurs in the binary expansion of *n*, then you include b_j in the product for *a* (if 2^j is absent from *n*, then you do not).
- **1** It is easy to see that after the (k 1)-st step you'll have the desired

 $a \equiv b^n \mod m$.

 $\mathsf{Time}(b^n \mod m) = O((\log n)(\log^2 m)).$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Modular Exponentiation by The Repeated Squaring

Example

Let us compute $5^{100} \mod 33$.

Dhananjoy Dey (Indian Institute of Informa

Modular Exponentiation by The Repeated Squaring

Example

Let us compute $5^{100} \mod 33$.

~ 1

$$5^{-} = 5$$

$$5^{2} = 25$$

$$5^{4} = 25 \times 25 \equiv 31 \mod 33$$

$$5^{8} \equiv 31 \times 31 \equiv 4 \mod 33$$

$$5^{16} \equiv 4 \times 4 \equiv 16 \mod 33$$

$$5^{32} \equiv 16 \times 16 \equiv 25 \mod 33$$

$$5^{64} \equiv 25 \times 25 \equiv 31 \mod 33$$

$$5^{96} \equiv 31 \times 25 \equiv 16 \mod 33$$

$$5^{100} \equiv 16 \times 31 \equiv 1 \mod 33$$

Dhananjoy Dey (Indian Institute of Informa

Outline

- Requirements to Design a PKC
- 3 Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption

PKC

- RSA
- ElGamal
- Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

PKC

RSA Key Generation

- Generate two large distinct random primes *p* & *q*.
- Compute n = pq and $\phi(n) = (p-1)(q-1)$.
- Select a random integer e, $1 < e < \phi(n)$ s/t gcd $(e, \phi(n)) = 1$.

PKC

BSA

• Compute the unique integer d, $1 < d < \phi(n)$ s/t

 $ed \equiv 1 \mod \phi(n).$

Public key is (n, e); Private key is (p, q, d).

RSA Encryption/Decryption

Encryption:

 $c \equiv m^e \mod n$,

Plaintext *m* and ciphertext $c \in \mathbb{Z}_n$.

Decryption:

$$m' \equiv c^d \mod n.$$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Image: A math

RSA Encryption/Decryption

Encryption:

 $c \equiv m^e \mod n$,

Plaintext *m* and ciphertext $c \in \mathbb{Z}_n$.

Decryption:

 $m' \equiv c^d \mod n.$

PKCS #1 v2.2: RSA Cryptography Standard, RSA Laboratories -October 27, 2012.

Public Key Cryptography

RSA

RSA Validation

We have

$$c^d \equiv (m^e)^d \equiv m^{ed} \equiv m^{1+k.\phi(n)} \mod n,$$

since $ed \equiv 1 \mod \phi(n)$, where k is an integer.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 34/94

RSA

RSA Validation

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

< ∃⇒ December 23, 2022 35/94

< □ > < 同

RSA

RSA Validation

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

< ∃⇒ December 23, 2022 36/94

э

< □ > < 同

RSA

Strong Prime Number

Definition

A prime *p* is called a strong prime if

- **()** p-1 has a large prime factor, say r,
- () p + 1 has a large prime factor, and
- \bigcirc r-1 has a large prime factor.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 37/94

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 38/94

PKC RSA

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

Properties of Euler phi function

If *p* is a prime, then $\phi(p) = p - 1$.

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

PKC

BSA

Properties of Euler phi function

If *p* is a prime, then $\phi(p) = p - 1$.

I The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then

 $\phi(mn) = \phi(m)\phi(n).$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

PKC

BSA

Properties of Euler phi function

If *p* is a prime, then $\phi(p) = p - 1$.

1 The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then

 $\phi(mn) = \phi(m)\phi(n).$

If $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, is the prime factorization of *n*, then

$$\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right).$$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Modular Arithmetic

• The multiplicative group of \mathbb{Z}_n is $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\}$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 39/94

< < >> < <</>

Modular Arithmetic

- The multiplicative group of \mathbb{Z}_n is $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\}.$
- Fermat's theorem: If gcd(a, p) = 1, for a prime *p* then $a^{p-1} \equiv 1 \mod p$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 39/94

(日)

BSA

Modular Arithmetic

- The multiplicative group of \mathbb{Z}_n is $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\}$.
- Fermat's theorem: If gcd(a, p) = 1, for a prime p then $a^{p-1} \equiv 1 \mod p$.
- Let n be an odd composite integer. An integer *a*, $1 \le a \le n-1$, $\ni a^{n-1} \not\equiv 1 \mod n$ is called a Fermat witness (to compositeness) for *n*.

BSA

Modular Arithmetic

- The multiplicative group of \mathbb{Z}_n is $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : gcd(a, n) = 1\}$.
- Fermat's theorem: If gcd(a, p) = 1, for a prime p then $a^{p-1} \equiv 1 \mod p$.
- Let n be an odd composite integer. An integer *a*, $1 \le a \le n-1$, $\ni a^{n-1} \not\equiv 1 \mod n$ is called a Fermat witness (to compositeness) for *n*.
- Euler's theorem: If $a \in \mathbb{Z}_n^*$, then

 $a^{\phi(n)} \equiv 1 \mod n$.

< ロ > < 同 > < 回 > < 回 > .

RSA

Pseudoprime

Definition

If *n* is an odd composite number and *b* is an integer $s/t \operatorname{gcd}(n, b) = 1$ and $b^{n-1} \equiv 1 \mod n$ then *n* is called a **pseudoprime** to the base *b*. The integer *b* is called a **Fermat liar** (to primality) for *n*.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 40/94

PKC RSA

.

Pseudoprime

Definition

If *n* is an odd composite number and *b* is an integer $s/t \operatorname{gcd}(n, b) = 1$ and $b^{n-1} \equiv 1 \mod n$ then *n* is called a **pseudoprime** to the base *b*. The integer *b* is called a **Fermat liar** (to primality) for *n*.

Example

• The number n = 91 is a pseudoprime to the base b = 3,

RSA

Pseudoprime

Definition

If *n* is an odd composite number and *b* is an integer $s/t \operatorname{gcd}(n, b) = 1$ and $b^{n-1} \equiv 1 \mod n$ then *n* is called a **pseudoprime** to the base *b*. The integer *b* is called a **Fermat liar** (to primality) for *n*.

Example

• The number n = 91 is a pseudoprime to the base b = 3,

 $\therefore 3^{90} \equiv 1 \mod 91.$

RSA

Pseudoprime

Definition

If *n* is an odd composite number and *b* is an integer $s/t \operatorname{gcd}(n, b) = 1$ and $b^{n-1} \equiv 1 \mod n$ then *n* is called a **pseudoprime** to the base *b*. The integer *b* is called a **Fermat liar** (to primality) for *n*.

Example

• The number n = 91 is a pseudoprime to the base b = 3,

 $\therefore 3^{90} \equiv 1 \mod 91.$

2 However, 91 is not a pseudoprime to the base 2, $\therefore 2^{90} \equiv 64 \mod 91.$

RSA

Pseudoprime

Definition

If *n* is an odd composite number and *b* is an integer $s/t \operatorname{gcd}(n, b) = 1$ and $b^{n-1} \equiv 1 \mod n$ then *n* is called a **pseudoprime** to the base *b*. The integer *b* is called a **Fermat liar** (to primality) for *n*.

Example

• The number n = 91 is a pseudoprime to the base b = 3,

 $\therefore 3^{90} \equiv 1 \mod 91.$

2 However, 91 is not a pseudoprime to the base 2, $\therefore 2^{90} \equiv 64 \mod 91.$

3 The composite integer $n = 341(= 11 \times 31)$ is a pseudoprime to the base 2, $\therefore 2^{340} \equiv 1 \mod 341$.

PKC RSA

Carmichael Number

Definition

A Carmichael number is a composite integer n s/t

 $b^{n-1} \equiv 1 \mod n$,

for every $b \in \mathbb{Z}_n^*$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 41/94
Carmichael Number

Definition

A Carmichael number is a composite integer n s/t

 $b^{n-1} \equiv 1 \mod n$,

for every $b \in \mathbb{Z}_{p}^{*}$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Carmichael Number

Definition

A Carmichael number is a composite integer n s/t

 $b^{n-1} \equiv 1 \mod n$,

for every $b \in \mathbb{Z}_n^*$.

Example n = 561 = 3 × 11 × 17 is a Carmichael number. This is the smallest Carmichael number. The following are Carmichael numbers: 1105 = 5 × 13 × 17 1729 = 7 × 13 × 19 2465 = 5 × 17 × 29

Carmichael Number

- A composite integer *n* is a Carmichael number iff the following two conditions are satisfied:
 - 1 is square-free, and
 - (1) p-1 divides n-1 for every prime divisor p of n.

Carmichael Number

- A composite integer *n* is a Carmichael number iff the following two conditions are satisfied:
 - \bigcirc *n* is square-free, and
 - (1) p-1 divides n-1 for every prime divisor p of n.
- A Carmichael number must be the product of at least three distinct primes.
- There are an infinite number of Carmichael numbers.

Quadratic Residue

Definition

Let $a \in \mathbb{Z}_n^*$; *a* is said to be a *quadratic residue* modulo *n*, if $\exists x \in \mathbb{Z}_n^* \ni x^2 \equiv a \mod n$.

If no such x exists, then a is called a quadratic non-residue modulo n.

The set of all quadratic residues modulo *n* is denoted by Q_n and the set of all quadratic non-residues is denoted by $\overline{Q_n}$.

() <) <)
 () <)
 () <)
</p>

Quadratic Residue

Definition

Let $a \in \mathbb{Z}_n^*$; *a* is said to be a *quadratic residue* modulo *n*, if $\exists x \in \mathbb{Z}_n^* \ni x^2 \equiv a \mod n$.

If no such x exists, then a is called a **quadratic non-residue** modulo n.

The set of all quadratic residues modulo *n* is denoted by Q_n and the set of all quadratic non-residues is denoted by $\overline{Q_n}$.

• Let *p* be an odd prime and let α be a generator of \mathbb{Z}_p^* . Then $a \in \mathbb{Z}_p^*$ is a quadratic residue modulo $p \Leftrightarrow a \equiv \alpha^i \mod p$, where *i* is an even integer.

Quadratic Residue

Definition

Let $a \in \mathbb{Z}_n^*$; *a* is said to be a *quadratic residue* modulo *n*, if $\exists x \in \mathbb{Z}_n^* \ni x^2 \equiv a \mod n$.

If no such x exists, then a is called a **quadratic non-residue** modulo n.

The set of all quadratic residues modulo *n* is denoted by Q_n and the set of all quadratic non-residues is denoted by $\overline{Q_n}$.

• Let *p* be an odd prime and let α be a generator of \mathbb{Z}_p^* . Then $a \in \mathbb{Z}_p^*$ is a quadratic residue modulo $p \Leftrightarrow a \equiv \alpha^i \mod p$, where *i* is an even integer.

• It follows that
$$\#Q_p = \frac{p-1}{2}$$
 and $\#\overline{Q_p} = \frac{p-1}{2}$.

43/94

December 23, 2022

PKC

RSA

Quadratic Residue

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 44/94

Quadratic Residue

i 0 1 2 3 4 5 6 7 8 9 10 11 a^i mod 13 1 6 10 8 9 2 12 7 3 5 4 11 Hence $Q_{13} = \{1, 3, 4, 9, 10, 12\}$ and $\overline{Q_{13}} = \{2, 5, 6, 7, 8, 11\}.$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 44/94

Quadratic Residue

Example

 $\alpha = 6$ is a generator of \mathbb{Z}_{13}^* . The powers of α are

i
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

$$a^i \mod 13$$
 1
 6
 10
 8
 9
 2
 12
 7
 3
 5
 4
 11

Hence $Q_{13} = \{1, 3, 4, 9, 10, 12\}$ and $\overline{Q_{13}} = \{2, 5, 6, 7, 8, 11\}$.

- Let n = p.q be a product of two distinct odd primes. Then a ∈ Z_n^{*} is a quadratic residue modulo n ⇔ a ∈ Q_p & a ∈ Q_q.
- It follows that $\#Q_n = \frac{(p-1)(q-1)}{4}$ and $\#\overline{Q_n} = \frac{3(p-1)(q-1)}{4}$.

Dhananjoy Dey (Indian Institute of Informa

Quadratic Residue

Example

 $\alpha = 6$ is a generator of \mathbb{Z}_{13}^* . The powers of α are

i
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

$$\alpha^i \mod 13$$
 1
 6
 10
 8
 9
 2
 12
 7
 3
 5
 4
 11

Hence $Q_{13} = \{1, 3, 4, 9, 10, 12\}$ and $\overline{Q_{13}} = \{2, 5, 6, 7, 8, 11\}$.

- Let n = p.q be a product of two distinct odd primes. Then a ∈ Z_n^{*} is a quadratic residue modulo n ⇔ a ∈ Q_p & a ∈ Q_q.
- It follows that $\#Q_n = \frac{(p-1)(q-1)}{4}$ and $\#\overline{Q_n} = \frac{3(p-1)(q-1)}{4}$.

Let n = 21. Then $Q_{21} = \{1, 4, 16\}$ and $\overline{Q_{21}} = \{2, 5, 8, 10, 11, 13, 17, 19, 20\}$.

A D b 4 A b

The Legendre and Jacobi Symbols

• Let *p* be an odd prime and *a* an integer. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be

$$\left(\frac{a}{p}\right) = \begin{cases} 0, & \text{if } p \mid a, \\ 1, & \text{if } a \in Q_p, \\ -1, & \text{if } a \in \overline{Q_p}. \end{cases}$$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 45/94

Image: A math

The Legendre and Jacobi Symbols

• Let *p* be an odd prime and *a* an integer. The Legendre symbol $\left(\frac{a}{p}\right)$ is defined to be

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0, & \text{if } p \mid a, \\ 1, & \text{if } a \in Q_p, \\ -1, & \text{if } a \in \overline{Q_p}. \end{cases}$$

• Let $n \ge 3$ be odd with prime factorization $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$. Then the **Jacobi symbol** $\left(\frac{a}{n}\right)$ is defined to be

$$\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right)^{e_1} \left(\frac{a}{p_2}\right)^{e_2} \cdots \left(\frac{a}{p_k}\right)^{e_k}$$

A B > A B >

 $(\frac{a}{p}) = a^{(p-1)/2} \mod p. \text{ In particular, } (\frac{1}{p}) = 1 \text{ and } (\frac{-1}{p}) = (-1)^{(p-1)/2}.$ Hence, $-1 \in Q_p$ if $p \equiv 1 \mod 4$, and $-1 \in \overline{Q_p}$ if $p \equiv 3 \mod 4$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 46/94

 $(\frac{a}{p}) = a^{(p-1)/2} \mod p. \text{ In particular, } (\frac{1}{p}) = 1 \text{ and } (\frac{-1}{p}) = (-1)^{(p-1)/2}.$ Hence, $-1 \in Q_p$ if $p \equiv 1 \mod 4$, and $-1 \in \overline{Q_p}$ if $p \equiv 3 \mod 4$.

 $(ab) \quad \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right). \text{ Hence if } a \in \mathbb{Z}_p^*, \text{ then } \left(\frac{a^2}{p}\right) = 1.$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 46/94

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

 $(\frac{a}{p}) = a^{(p-1)/2} \mod p. \text{ In particular, } (\frac{1}{p}) = 1 \text{ and } (\frac{-1}{p}) = (-1)^{(p-1)/2}.$ Hence, $-1 \in Q_p$ if $p \equiv 1 \mod 4$, and $-1 \in \overline{Q_p}$ if $p \equiv 3 \mod 4$.

 $(\underline{ab}_{p}) = (\underline{a}_{p})(\underline{b}_{p}).$ Hence if $a \in \mathbb{Z}_{p}^{*},$ then $(\underline{a^{2}}_{p}) = 1.$

If
$$a \equiv b \mod p$$
, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.

- $(\frac{a}{p}) = a^{(p-1)/2} \mod p. \text{ In particular, } (\frac{1}{p}) = 1 \text{ and } (\frac{-1}{p}) = (-1)^{(p-1)/2}.$ Hence, $-1 \in Q_p$ if $p \equiv 1 \mod 4$, and $-1 \in \overline{Q_p}$ if $p \equiv 3 \mod 4$.
- $(ab) \quad \left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right). \text{ Hence if } a \in \mathbb{Z}_p^*, \text{ then } \left(\frac{a^2}{p}\right) = 1.$
- If $a \equiv b \mod p$, then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$.
- Law of quadratic reciprocity: If q is an odd prime distinct from p, then

$$\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)(-1)^{(p-1)(q-1)/4}.$$

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

Fermat Test for Primality – Probabilistic Algorithm

Fermat Test for Primality

```
Input: n
Output: YES if n is composite, NO otherwise.
Choose a random b, 0 < b < n
if gcd(b, n) > 1 then
   return YES
end
else :
if b^{n-1} \not\equiv 1 \mod n then
   return YES
end
else :
return NO
```


Dhananjoy Dey (Indian Institute of Informa

- If n is an odd prime, we know that an integer can have at most two square roots, mod n. In particular, the only square roots of 1 mod n are ±1.
- If $a \not\equiv 0 \mod n$, $a^{(n-1)/2}$ is a square root of $a^{n-1} \equiv 1 \mod n$, so $a^{(n-1)/2} \equiv \pm 1 \mod n$.

ヨトィヨト

- If n is an odd prime, we know that an integer can have at most two square roots, mod n. In particular, the only square roots of 1 mod n are ±1.
- If $a \not\equiv 0 \mod n$, $a^{(n-1)/2}$ is a square root of $a^{n-1} \equiv 1 \mod n$, so $a^{(n-1)/2} \equiv \pm 1 \mod n$.
- If $a^{(n-1)/2} \not\equiv \pm 1 \mod n$ for some *a* with $a \not\equiv 0 \mod n$, then *n* is composite.

• For a randomly chosen *a* with $a \not\equiv 0 \mod n$, compute $a^{(n-1)/2} \mod n$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 49/94

- For a randomly chosen *a* with $a \not\equiv 0 \mod n$, compute $a^{(n-1)/2} \mod n$.
 - If $a^{(n-1)/2} \equiv \pm 1 \mod n$, declare *n* a **probable prime**, and optionally repeat the test a few more times.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

∃ ► < ∃ ►</p>

- For a randomly chosen *a* with $a \not\equiv 0 \mod n$, compute $a^{(n-1)/2} \mod n$.
 - If $a^{(n-1)/2} \equiv \pm 1 \mod n$, declare *n* a **probable prime**, and optionally repeat the test a few more times.

If n is large and chosen at random, the probability that n is prime is very close to 1.

- If $a^{(n-1)/2} \not\equiv \pm 1 \mod n$, declare *n* composite.

This is always correct.

(日)

- For a randomly chosen *a* with $a \not\equiv 0 \mod n$, compute $a^{(n-1)/2} \mod n$.
 - If $a^{(n-1)/2} \equiv \pm 1 \mod n$, declare *n* a **probable prime**, and optionally repeat the test a few more times.

If n is large and chosen at random, the probability that n is prime is very close to 1.

If $a^{(n-1)/2} \not\equiv \pm 1 \mod n$, declare *n* composite.

This is always correct.

The Euler test is more powerful than the Fermat test.

・ロッ ・ 一 ・ ・ ー ・ ・ ー ・

The Euler test is more powerful than the Fermat test.

- If the Fermat test finds that *n* is composite, so does the Euler test.
- If *n* is an odd composite integer (other than a prime power), 1 has at least 4 square roots mod *n*.

So we can have $a^{(n-1)/2} \equiv \beta \mod n$, where $\beta \neq \pm 1$ is a square root of 1.

Then $a^{n-1} \equiv 1 \mod n$. In this situation, the Fermat Test (incorrectly) declares *n* a probable prime, but the Euler test (correctly) declares *n* composite.

(日)

Miller-Rabin Test – Probabilistic Algorithm

- The Euler test improves upon the Fermat test by taking advantage of the fact, if 1 has a square root other than $\pm 1 \mod n$, then *n* must be composite.
- If a^{(n-1)/2} ≠ ±1 mod n, where gcd(a, n) = 1, then n must be composite for one of two reasons:
 - If $a^{n-1} \not\equiv 1 \mod n$, then *n* must be composite by Fermat's Little Theorem
 - If $a^{n-1} \equiv 1 \mod n$, then *n* must be composite because $a^{(n-1)/2}$ is a square root of $1 \mod n$ different from ± 1 .

< ロ > < 同 > < 回 > < 回 > .

Miller-Rabin Test – Probabilistic Algorithm

- The Euler test improves upon the Fermat test by taking advantage of the fact, if 1 has a square root other than $\pm 1 \mod n$, then *n* must be composite.
- If a^{(n-1)/2} ≠ ±1 mod n, where gcd(a, n) = 1, then n must be composite for one of two reasons:
 - If $a^{n-1} \not\equiv 1 \mod n$, then *n* must be composite by Fermat's Little Theorem
 - If $a^{n-1} \equiv 1 \mod n$, then *n* must be composite because $a^{(n-1)/2}$ is a square root of 1 mod *n* different from ±1.
- The limitation of the Euler test is that is does not go to any special effort to find square roots of 1, different from ±1. The Miller-Rabin test does this.

Miller-Rabin Test – Probabilistic Algorithm

Miller-Rabin Test

```
Input: an odd integer n \ge 3 and security parameter t \ge 1.
Output: an answer "prime" or "composite" to the question: "Is n prime?"
Write n - 1 = 2^s r s/t r is odd.
for i = 1 to t do
     Choose a random integer a s/t 2 \le a \le n - 2.
     Compute y \equiv a^r \mod n
     if y \neq 1 \& y \neq n - 1 then
          i \leftarrow 1.
           while j \le s - 1 \& y \ne n - 1 do
                Compute y \leftarrow y^2 \mod n.
                If y = 1 then return("composite").
                i \leftarrow i + 1.
           end
           If y \neq n-1 then return ("composite").
     end
end
Return("prime").
```

・ 同 ト ・ ヨ ト ・ ヨ ト

then such these from with some

RSA

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer n > 1**Output:** *n* is **Prime** or **Composite** in deterministic polynomial-time If $n = a^b$ with $a \in \mathbb{N}$ & b > 1, then output **COMPOSITE**.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 53/94

★ ∃ > < ∃ >

RSA

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer n > 1**Output:** *n* is **Prime** or **Composite** in deterministic polynomial-time If $n = a^b$ with $a \in \mathbb{N}$ & b > 1, then output **COMPOSITE**. Find the smallest *r* such that $ord_r(n) > 4(\log n)^2$. If 1 < gcd(a, n) < n for some $a \le r$, then output **COMPOSITE**.

★ ∃ > < ∃ >

RSA

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer n > 1**Output:** *n* is **Prime** or **Composite** in deterministic polynomial-time If $n = a^b$ with $a \in \mathbb{N}$ & b > 1, then output **COMPOSITE**. Find the smallest *r* such that $ord_r(n) > 4(\log n)^2$. If 1 < gcd(a, n) < n for some $a \le r$, then output **COMPOSITE**. If $n \le r$, then output **PRIME**.

Dhananjoy Dey (Indian Institute of Informa

★ ∃ > < ∃ >

Deterministic Polynomial Time Algorithm

he AKS Algorithm

```
Input: a positive integer n > 1
Output: n is Prime or Composite in deterministic polynomial-time
If n = a^b with a \in \mathbb{N} \& b > 1, then output COMPOSITE.
Find the smallest r such that ord_r(n) > 4(\log n)^2.
If 1 < \gcd(a, n) < n for some a \le r, then output COMPOSITE.
If n \leq r, then output PRIME.
for a = 1 to |2\sqrt{\phi(r)}\log n| do
   if (x-a)^n \not\equiv (x^n - a) \mod (x^r - 1, n).
   then output COMPOSITE.
end
Return("PRIME").
```


A B > A B >

RSA Example

- Suppose *A* wants to send the following message to *B* **RSAISTHEKEYTOPUBLICKEYCRYPTOGRAPHY**
- *B* chooses his $n = 737 = 11 \times 67$. Then $\phi(n) = 660$. Suppose he picks e = 7, $\Rightarrow d = 283$.
- $\therefore 26^2 < n < 26^3$ \therefore the block size of the plaintext = 2.

 $m_1 = RS' = 17 \times 26 + 18 = 460$

 $c_1 = 460^7 \equiv 697 \mod 737 = 1.26^2 + 0.26 + 21 = BAV$

< ロ > < 同 > < 回 > < 回 > .

РКС

RSA

RSA Example

	RS	AI	ST	HE	KE	YT	OP	UB
mb	460	8	487	186	264	643	379	521
cb	697	387	229	340	165	223	586	5

LI	CK	EY	CR	YP	TO	GR	AP	HY
294	62	128	69	639	508	173	15	206
189	600	325	262	100	689	354	665	673

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 55/94

E ► < E ►</p>

< □ > < 同

PKC

RSA

RSA Example

• Suppose A wants to send the following message to B

power

- *B* chooses his *n* = 1943 = 29 × 67. Then φ(*n*) = 1848. Suppose he picks *e* = 701, ⇒ *d* = 29.
- $\therefore 26^2 < n < 26^3$ \therefore the block size of the plaintext = 2.
- $m_1 = 'po' = 15 \times 26 + 14 = 404$, $m_2 = 'we' = 22 \times 26 + 4 = 576$, $m_3 = 'ra' = 17 \times 26 + 0 = 442$.
- $c_1 = 404^{701} \equiv 1419 \mod 1943 = 2.26^2 + 2.26 + 15 = ccp$.
- $||ly, c_2 = 344 = 13.26 + 6 = ang \& c_3 = 210 = 8.26 + 2 = aic.$
- The cipher text is

ccpangaic

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

PKC

RSA

Security of RSA

Security

If we know *n* and $\phi(n)$, we can find *p* & *q*.
PKC

RSA

Security of RSA

Security

If we know *n* and $\phi(n)$, we can find *p* & *q*.

We have

$$\phi(n) = pq - p - q + 1 = n - (p + q) + 1.$$

Since we know *n*, we can find p + q from the above equation. Since we know pq = n and p + q, we can find p & q by factoring the quadratic equation

 $x^2 - (p+q)x + pq = 0.$

Dhananjoy Dey (Indian Institute of Informa

RSA

Security of RSA

- Security of RSA relies on difficulty of finding d given n & e.
- Breaking RSA is no harder than Factoring.
- It is not secure against chosen ciphertext attacks (CCA). •

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Image: A math

BSA

Security of RSA

- Security of RSA relies on difficulty of finding d given n & e.
- Breaking RSA is no harder than Factoring.
- It is not secure against chosen ciphertext attacks (CCA). ۲
- RSA is secure against chosen plaintext attack (CPA). •

< ロ > < 同 > < 回 > < 回 > < 回 > <

IND-CCA

Security notion for encryption.

- From a ciphertext *c*, an attacker should not be able to derive any information from the corresponding plaintext *m*.
- Even if the attacker can obtain the decryption of any ciphertext, *c* excepted.
- This is called indistinguishability against a chosen ciphertext attack (IND-CCA).

(*) * (*) *)

Choice of Encryption Key e

• The encryption exponent *e* should not be too small.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 60 / 94

Choice of Encryption Key e

- The encryption exponent *e* should not be too small.
- Suppose e = 3 and there are 3 recipients having the same encryption exponent 3, but with different modulus n_i , i = 1, 2, 3.
- Then, ciphertexts $y_i \equiv M^3 \mod n_i$ for i = 1, 2, 3 and send them to the recipients.
- Suppose two of them, say n₁ & n₂, are not coprime. Then, gcd(n₁, n₂) is a non-trivial factor of n₁ & n₂ and any adversary can factorise both of them.
- So, we can always assume that n_i for i = 1, 2, 3 are pairwise coprime.
- If adversary gets hold of the messages y_i, 1 ≤ i ≤ 3, (s)he can compute M³ mod n₁n₂n₃ using Chinese remainder theorem since gcd(n_i, n_j) = 1 for i ≠ j.
- Since m < n_i, m³ < n₁n₂n₃. So, M³ mod n₁n₂n₃ = M³ and the adversary can find M by taking the cube root of M³ mod n₁n₂n₃.

< ロ > < 同 > < 回 > < 回 > :

PKC RSA

RSA in Practice – Optimal Asymmetric Encryption Padding (OAEP)

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Optimal Asymmetric Encryption Padding (OAEP) I

- To encrypt a message *M* of *k*₂-bit, first concatenates the message with 0^{k1}.
- Expands the message to $M||0^{k_1}$.
- After that, select a random string r of length k_0 bits.
- Use it as the random seed for G(r) and computes

$$x_1 = (M||0^{k_1}) \oplus G(r), \quad x_2 = r \oplus H(x_1)$$

- If x₁||x₂ is a binary number bigger than n, Alice chooses another random string r and computes the new values of x₁ & x₂.
- If G(r) produces fairly random outputs, $x_1 || x_2$ will be less than *p* in binary with a probability greater than $\frac{1}{2}$.

Optimal Asymmetric Encryption Padding (OAEP) II

• After getting a string *r* with $x_1 ||x_2 < n$, Alice then encrypts $x_1 ||x_2$ to get the ciphertext

 $E(M) = (x_1 || x_2)^e \equiv c \mod n$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 63/94

(日)

PKC

ElGamal PKC in \mathbb{Z}_p^*

Key Generation:

- $< \alpha >= \mathbb{Z}_p^*, \ \mathcal{P} = \mathbb{Z}_p^* \& C = \mathbb{Z}_p^* \times \mathbb{Z}_p^*.$
- $\beta \equiv \alpha^a \mod p$.
- Public : p, α, β and Private : a.

Encryption:

- Select a random $k \in \mathbb{Z}_{p-1}$.
- $Enc_k(x) = (y_1, y_2)$

$$y_1 \equiv \alpha^k \mod p, \ y_2 \equiv x \cdot \beta^k \mod p.$$

Decryption:

$$Dec_k(y_1, y_2) \equiv y_2 . (y_1^a)^{-1} \mod p.$$

PKC

ElGamal

ElGamal PKC in \mathbb{Z}_p^*

Example

- Let p = 29 and $\alpha = 2$, α is a primitive element mod 29.
- Let $a = 5, \therefore \beta \equiv 2^5 \mod \equiv 3 \mod 29$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 65/94

ElGamal PKC in \mathbb{Z}_p^*

Example

- Let p = 29 and $\alpha = 2$, α is a primitive element mod 29.
- Let $a = 5, \therefore \beta \equiv 2^5 \mod \equiv 3 \mod 29$.
- Public Key: (29, 2, 3) and Private Key: 5
- Plaintext: x = 6 & random number $k = 14 \in \mathbb{Z}_{28}$

Dhananjoy Dey (Indian Institute of Informa

ElGamal PKC in \mathbb{Z}_p^*

Example

- Let p = 29 and $\alpha = 2$, α is a primitive element mod 29.
- Let $a = 5, \therefore \beta \equiv 2^5 \mod \equiv 3 \mod 29$.
- Public Key: (29, 2, 3) and Private Key: 5
- Plaintext: x = 6 & random number $k = 14 \in \mathbb{Z}_{28}$

 $y_1 \equiv 2^{14} \equiv 28 \mod 29 \ \& \ y_2 \equiv 6.3^{14} \equiv 23 \mod 29$

Ciphertext: (28, 23).

Dhananjoy Dey (Indian Institute of Informa

PKC

Elliptic Curve

Elliptic Curves

• Elliptic curve¹ E over field \mathbb{K} is defined by

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}, \ a_{i} \in \mathbb{K}$$

The set of K-rational points *E*(K) is defined as *E*(K) = {(x, y) ∈ K × K : y² + a₁xy + a₃y = x³ + a₂x² + a₄x + a₆} ∪ {*O*}

Theorem

There exists an addition law on E and the set E(K) with that addition forms a group.

¹It is called a (generalized) Weierstrass equation. The equation defines a cubic curve called a Weierstrass curve.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022

66/94

PKC

Elliptic Curves I

Let K be a field of characteristic ≠ 2, 3, and let x³ + ax + b be a cubic polynomial with no multiple roots
 (-16(4a³ + 27b²) ≠ 0 ⇒ 4a³ + 27b² ≠ 0).
 An elliptic curve over K is the set of points (x, y) with x, y ∈ K which satisfy the equation

$$y^2 = x^3 + ax + b$$

together with a single element denoted *O* and called the *point at infinity*.

★ ∃ > < ∃ >

Elliptic Curves II

If *char* K = 2, then an elliptic curve over \mathbb{K} is the set of points satisfying an equation of type either

$$y^2 + cy = x^3 + ax + b$$

or

$$y^2 + xy = x^3 + ax + b$$

together with the point at infinity O.

If *char* K = 3, then an elliptic curve over \mathbb{K} is the set of points satisfying the equation

$$y^2 = x^3 + ax^2 + bx + c$$

together with the point at infinity O.

(*) * (*) *)

- Suppose *E* is a non-singular elliptic curve.
- The point at infinity O, will be the identity element, so $P + O = O + P = P \forall P \in E$.
- Suppose $P, Q \in E$, where $P = (x_1, y_1) \& Q = (x_2, y_2)$

 $\textcircled{0} \quad x_1 \neq x_2$

- *L* is the line through *P* and *Q*.
- L intersects E in the two points P and Q
- *L* will intersect *E* in one further point R'.
- If we reflect *R'* in the *x*-axis, then we get a point *R*.

P + Q = R.

(*) * (*) *)

$$x_1 = x_2 \& y_1 = -y_2$$

(x, y) + (x, -y) = O

- Draw a tangent line L through P
- Follow step (i)

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

э

문에 비문어

< < >> < <</>

Elliptic Curve

Addition Law on Elliptic Curves

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 73/94

• Suppose that we want to add the points $P_1 = (x_1, y_1) \& P_2 = (x_2, y_2)$ on the elliptic curve

$$E : y^2 = x^3 + ax + b.$$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 74/94

• Suppose that we want to add the points $P_1 = (x_1, y_1) \& P_2 = (x_2, y_2)$ on the elliptic curve

$$E : y^2 = x^3 + ax + b.$$

• Let the line connecting P_1 to P_2 be

 $L : y = \lambda x + v$

• Explicitly, the slope and *y*-intercept of *L* are given by

∃ ► < ∃ ►</p>

• Suppose that we want to add the points $P_1 = (x_1, y_1) \& P_2 = (x_2, y_2)$ on the elliptic curve

$$E : y^2 = x^3 + ax + b.$$

• Let the line connecting P_1 to P_2 be

 $L : y = \lambda x + v$

• Explicitly, the slope and *y*-intercept of *L* are given by

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq P_2 \\ \frac{3x_1^2 + a}{2y_1} & \text{if } P_1 = P_2 \end{cases} \text{ and } \nu = y_1 - \lambda x_1$$

• Thus, we have

 $P_1 + P_2 = (x_3, -y_3),$

where $x_3 = \lambda^2 - x_1 - x_2$ and $y_3 = \lambda x_3 + \nu$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 75/94

• Thus, we have

 $P_1 + P_2 = (x_3, -y_3),$

where $x_3 = \lambda^2 - x_1 - x_2$ and $y_3 = \lambda x_3 + \nu$.

• If $P_1 \neq P_2$ and $x_1 = x_2$, then $P_1 + P_2 = O$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 75/94

< A

• Thus, we have

 $P_1 + P_2 = (x_3, -y_3),$

where $x_3 = \lambda^2 - x_1 - x_2$ and $y_3 = \lambda x_3 + \nu$.

- If $P_1 \neq P_2$ and $x_1 = x_2$, then $P_1 + P_2 = O$.
- If $P_1 = P_2$ and $y_1 = 0$, then $P_1 + P_2 = 2P_1 = 0$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・

• Thus, we have

 $P_1 + P_2 = (x_3, -y_3),$

where $x_3 = \lambda^2 - x_1 - x_2$ and $y_3 = \lambda x_3 + \nu$.

- If $P_1 \neq P_2$ and $x_1 = x_2$, then $P_1 + P_2 = O$.
- If $P_1 = P_2$ and $y_1 = 0$, then $P_1 + P_2 = 2P_1 = O$.

Visualizing Elliptic Curve Cryptography

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 75/94

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 76/94

Problem

Let *E* be the elliptic curve $y^2 = x^3 + x + 1$ over \mathbb{F}_{11} . Then write down all the points of *E* over \mathbb{F}_{11} . Draw the elliptic curve *E* along with the grid.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 77/94

Problem

Let *E* be the elliptic curve $y^2 = x^3 + x + 1$ over \mathbb{F}_{11} . Then write down all the points of *E* over \mathbb{F}_{11} . Draw the elliptic curve *E* along with the grid.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 77/94

Solution

• First compute square of all the elements of \mathbb{F}_{11} :

 $1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 5, 5^2 = 3, 6^2 = 3, 7^2 = 5, 8^2 = 9, 9^2 = 4, 10^2 = 1$

Solution

• First compute square of all the elements of \mathbb{F}_{11} :

$$1^2 = 1, 2^2 = 4, 3^2 = 9, 4^2 = 5, 5^2 = 3, 6^2 = 3, 7^2 = 5, 8^2 = 9, 9^2 = 4, 10^2 = 1$$

$$\begin{array}{l} Q_{11} = \{1, 3, 4, 5, 9\} \\ x = 0 \Rightarrow y^2 = 1 \Rightarrow y = \pm 1 \\ x = 1 \Rightarrow y^2 = 3 \Rightarrow y = 5 \ or \ 6 \\ x = 2 \Rightarrow y^2 = 0 \Rightarrow y = 0 \\ x = 3 \Rightarrow y^2 = 9 \Rightarrow y = 3 \ or \ 8 \\ x = 4 \Rightarrow y^2 = 3 \Rightarrow y = 5 \ or \ 6 \\ x = 5 \Rightarrow y^2 = 10 \\ x = 6 \Rightarrow y^2 = 3 \Rightarrow y = 5 \ or \ 6 \\ x = 7 \Rightarrow y^2 = 10 \\ x = 8 \Rightarrow y^2 = 4 \Rightarrow y = 2 \ or \ 9 \\ x = 9 \Rightarrow y^2 = 2 \\ x = 10 \Rightarrow y^2 = 10 \\ E(\mathbb{F}_{11}) = \{O, (0, 1), (0, 10), (1, 5), (1, 6), (2, 0), (3, 3), (3, 8), (4, 5), (4, 6), (6, 5), (6, 6), (8, 2), (8, 9)\} \end{array}$$

PKC

Elliptic Curve

NIST's Primes for ECC

$$p_{192} = 2^{192} - 2^{64} - 1$$

$$p_{224} = 2^{224} - 2^{96} + 1$$

$$p_{256} = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$$

$$p_{384} = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$$

$$p_{521} = 2^{521} - 1$$

$$W - 25519 = 2^{255} - 19$$

$$W - 448 = 2^{448} - 2^{224} - 1$$

Edwards25519	=	$2^{255} - 19$
Edwards448	=	$2^{448} - 2^{224} - 1$

Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 79/94

Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

• First choose two public elliptic curve points P and Q s/t

Q = sP,

where *s* is the private key.

- To encrypt choose a random k
- $Enc_k(m) = (y_1, y_2)$

 $y_1 = kP, \quad y_2 = m + kQ.$

• Decryption:

$$Dec_k(y_1, y_2) = y_2 - s.y_1$$

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

- The plaintext space in general may not consist of the points on the curve *E*.
- So, we convert the plaintext as an arbitrary element in \mathbb{Z}_p .
- After that, we can apply a suitable hash function $h: E \to \mathbb{Z}_p$ is applied to kQ
- To encrypt a messaxe *m* choose a random *k*
- The ciphertext $c = Enc_k(m) = (y_1, y_2)$

 $y_1 = kP$, $y_2 \equiv (m + h(kQ)) \mod p$.

• Decryption:

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・
Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

- The plaintext space in general may not consist of the points on the curve *E*.
- So, we convert the plaintext as an arbitrary element in \mathbb{Z}_p .
- After that, we can apply a suitable hash function $h: E \to \mathbb{Z}_p$ is applied to kQ
- To encrypt a messaxe *m* choose a random *k*
- The ciphertext $c = Enc_k(m) = (y_1, y_2)$

 $y_1 = kP$, $y_2 \equiv (m + h(kQ)) \mod p$.

• Decryption:

- Compute *h(kQ)*
- Compute $c \equiv (y_2 h(kQ)) \mod p$

・ロッ ・雪 ・ ・ ヨ ・ ・

Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Key Generation

- Let *E* be an elliptic curve defined over Z_p (where p > 3 is prime) s/t *E* contains a cyclic subgroup H = ⟨P⟩ of prime order n in which the Discrete Logarithm Problem is infeasible.
- Let $h: E \to \mathbb{Z}_p$ be a secure hash function.
- Let $\mathcal{P} = \mathbb{Z}_p$ and $C = (\mathbb{Z}_p \times \mathbb{Z}_2) \times \mathbb{Z}_p$. Define

 $\mathcal{K} = \{ (E, P, s, Q, n, h) : Q = sP \},\$

where *P* and *Q* are points on *E* and $s \in \mathbb{Z}_n^*$. The values *E*, *P*, *Q*, *p*, and *h* are the public key and *s* is the private key.

< ロ > < 同 > < 回 > < 回 > .

Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Encryption

• To encrypt a message *m* sender selects a random number $k \in \mathbb{Z}_n^*$ and compute the ciphertext

 $y = e_K(m, k) = (y_1, y_2) = (POINT-COMPRESS(kP), m + h(kQ)$ mod p),

where $y_1 \in \mathbb{Z}_p \times \mathbb{Z}_2$ and $y_2 \in \mathbb{Z}_p$.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 83/94

< ロ > < 同 > < 回 > < 回 > .

ElGamal Cryptosystems on Elliptic Curves

Encryption

• To encrypt a message *m* sender selects a random number $k \in \mathbb{Z}_n^*$ and compute the ciphertext

 $y = e_K(m, k) = (y_1, y_2) = (POINT-COMPRESS(kP), m + h(kQ) mod p),$

where $y_1 \in \mathbb{Z}_p \times \mathbb{Z}_2$ and $y_2 \in \mathbb{Z}_p$.

Decryption

 $d_K(y) = y_2 - h(R) \mod p,$

where $R = sPOINT-DECOMPRESS(y_1)$.

Public Key Cryptography

・ロッ ・雪 ・ ・ ヨ ・ ・

The Many Flaws of Dual_EC_DRBG

Matthew Green in Dual EC, NSA, RNGs 0 September 18, 2015 1035 Words

The Many Flaws of Dual_EC_DRBG

Update 9/19: RSA warns developers not to use the default Dual_EC_DRBG generator in BSAFE. Oh lord.

As a technical follow up to my previous post about the NSA's war on crypto, I wanted to make a few specific points about standards. In particular I wanted to address the allegation that NSA inserted a backdoor into the Dual-EC pseudorandom number generator.

For those not following the story, Dual-EC is a pseudorandom number generator proposed by NIST for international use back in 2006. Just a few months later, Shumow and Ferguson made cryptographic history by pointing out that there might be an NSA backdoor in the algorithm. This possibility — fairly remarkable for an algorithm of this type — looked bad and smelled worse. If true, it spelled almost certain doom for anyone relying on Dual-EC to keep their system safe from spying eyes.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

PKC

Elliptic Curve

Key Comparison

Symmetric Key Size	Based on Factoring	Based on DLP	Based on ECDLP
(in bits)	(in bits)	(in bits)	(in bits)
80	1024	1024	160
112	2048	2048	224
128	3072	3072	256
192	7680	7680	384
256	15360	15360	512

Э

Dhananjoy Dey (Indian Institute of Informa

< □ > < 同

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- 3 Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption

4 PK

- RSA
- ElGamal
- Elliptic Curve

Digital Signature

• Digital Signature Algorithm (DSA)

Signature Scheme

Definition

A signature scheme is a five-tuple ($\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V}$), where the following conditions are satisfied:

- P is a finite set of possible messages
- Is a finite set of possible signatures
- W \mathcal{K} , the keyspace, is a finite set of possible keys

■ For each *K* ∈ *K*, there is a signing algorithm $sig_K \in S$ and a corresponding verification algorithm $ver_K \in V$. Each $sig_K : P \to A$ and $ver_K : P \times A \to \{true, false\}$ are functions s/t the following equation is satisfied for every message $x \in P$ and for every signature $y \in A$

$$ver_{K} = \begin{cases} \text{true} & \text{if } y = sig_{K}(x) \\ \text{false} & \text{if } y \neq sig_{K}(x) \end{cases}$$

A pair (x, y) with $x \in \mathcal{P}$ and $y \in \mathcal{A}$ is called a signed message.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

< ロ > < 同 > < 回 > < 回 >

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 88/94

RSA Signature Scheme

Signature Generation

A signs a message m. Any entity B can verify A's signature and recover the message m from the signature.

- Compute $\tilde{m} = R(m)$, where $R : \mathcal{M} \to \mathbb{Z}_n$.
- Compute $s \equiv \tilde{m}^d \mod n$.
- *A*'s signature for *m* is *s*.

프 > + 프 >

RSA Signature Scheme

Signature Generation

A signs a message m. Any entity B can verify A's signature and recover the message m from the signature.

- Compute $\tilde{m} = R(m)$, where $R : \mathcal{M} \to \mathbb{Z}_n$.
- Compute $s \equiv \tilde{m}^d \mod n$.
- A's signature for m is s.

Signature Verification

To verify A's signature s and recover the message m, B should:

- Obtain A's authentic public key (n, e).
- Compute $\tilde{m} \equiv s^e \mod n$.
- Verify that $\tilde{m} \in$ range of \mathcal{M} ; if not, reject the signature.
- Recover $m = R^{-1}(\tilde{m})$.

DSA

Key Generation

- Choose a hash function h.
- Occide a key length L.
- Solution \mathbf{Q} Choose prime q with with same number of bits as output of h.
- Choose α -bit prime p such that q|(p-1).
- **5** Choose *g* such that $g^q \equiv 1 \mod p$.

```
Choose x:0 < x < q.Calculate:y \equiv g^x \mod p.(p,q,g,y)\longrightarrow Public Keyx\longrightarrow Private Key
```


DSA

Signature Generation

- Generate random k such that 0 < k < q.
- 2 Calculate $r \equiv (g^k \mod p) \mod q$.
- **3** Calculate $s \equiv (k^{-1}(h(m) + xr)) \mod q$.
- Signature is (r, s).

Image: A math

DSA

Signature Generation

- **1** Generate random k such that 0 < k < q.
- 2 Calculate $r \equiv (g^k \mod p) \mod q$.
- 3 Calculate $s \equiv (k^{-1}(h(m) + xr)) \mod q$.
- Signature is (r, s).

Signature Verification

w ≡ s⁻¹ mod q.
 u₁ ≡ (h(m).w) mod q.
 u₂ ≡ rw mod q.
 v ≡ (g^{u₁}.y^{u₂} mod p) mod q.
 Verify v = r.

・ 同 ト ・ ヨ ト ・ ヨ ト

Dece

Schnorr Signature Scheme

Key Generation

• Let *p* be a prime s/t the DLP in \mathbb{Z}_p^* is intractable, and let *q* be a prime and $q \mid (p-1)$. Let $\alpha \in \mathbb{Z}_p^*$ be a q^{th} root of unity modulo *p*. Let $\mathcal{P} = \{0, 1\}^*$, $\mathcal{A} = \mathbb{Z}_q \times \mathbb{Z}_q$, and define

$$\mathcal{K} = \{ (p, q, \alpha, a, \beta) : \beta \equiv \alpha^a \mod p \},\$$

where $0 \le a \le q - 1$.

The values p, q, α , and β are the public key, and *a* is the private key.

Finally, let $h : \{0, 1\}^* \to \mathbb{Z}_q$ be a secure hash function.

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

Schnorr Signature Scheme

Signature Generation

• Signer first selects a (secret) random number k, $1 \le k \le q - 1$, define

 $sig_K(x,k) = (\gamma, \delta),$

where

$$\gamma = h(x || \alpha^k \mod p) \& \delta = k + a\gamma \mod q.$$

Verification

For x ∈ {0, 1}* and γ, δ ∈ Z_q, verification is done by performing the following computations:

$$ver_K(x,(\gamma,\delta)) = true \iff h(x||\alpha^{\delta}\beta^{-\gamma} \mod p) = \gamma.$$

(日)

W Diffie & M Hellman.

New Directions in Cryptography, IEEE Transactions on Information Theory, 22(6), 1976.

J. Hoffstein, J. Pipher & J. H. Silverman,

An Introduction to Mathematical Cryptography, Second Edition, Springer, 2014.

J. Katz & Y. Lindell.

Introduction to Modern Cryptography, CRC Press, 2021.

A Course in Number Theory and Cryptography, Springer- Verlag, 1994.

A. Menezes, P. Oorschot & S. Vanstone, Handbook of Applied Cryptography, CRC Press, 1997, Available Online at http://www.cacr.math.uwateroo.ca/hac/

D. R. Stinson & M. B. Paterson.

Cryptography - Theory and Practice, Chapman & Hall/CRC, 2019.

Thanks a lot for your attention!

Dhananjoy Dey (Indian Institute of Informa

Public Key Cryptography

December 23, 2022 94/94