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Disclaimers

1
All the pictures used in this presentation are taken from freely available
websites.

2
If there is a reference on a slide all of the information on that slide is
attributable to that source whether quotation marks are used or not.

3
Any mention of commercial products or reference to commercial
organizations is for information only; it does not imply recommendation
or endorsement nor does it imply that the products mentioned are
necessarily the best available for the purpose.
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Introduction to Public Key Cryptography

A Generic View of Public Key Crypto

encryptplaintext

public key

ciphertext

decrypt

private key

plaintext

Advantages over symmetric-key

1 Better key distribution and management
No danger that public key compromised

2 New protocols
Digital Signature

3 Long-term encryption

Only disadvantage: much more slower than symmetric key crypto
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Introduction to Public Key Cryptography

Definition

PKC

A public key cryptosystem is a pair of families {Ek : k ∈ K} and {Dk : k ∈ K} of
algorithms representing invertible transformations,

Ek :M→ C & Dk : C →M

on a finite message spaceM and ciphertext space C, such that

(i) for every k ∈ K , Dk is the inverse of Ek and vice versa,
(ii) for every k ∈ K , M ∈ M and C ∈ C, the algorithms Ek and Dk are easy to

compute.
(iii) for almost every k ∈ K , each easily computed algorithm equivalent to Dk

is computationally infeasible to derive from Ek,
(iv) for every k ∈ K , it is feasible to compute inverse pairs Ek and Dk from k.
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Introduction to Public Key Cryptography

Definition

Computationally Infeasible

A task is computationally infeasible if either the time taken or the
memory required for carrying out the task is finite but impossibly
large.

Any computational task which takes ≥ 2112 bit operations, we say,
it is computationally infeasible in present day scenario.
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Introduction to Public Key Cryptography

PKC
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Introduction to Public Key Cryptography

Digital Signature

Signing a Message M

Message M

Hash Function h
−→ Digest h(M)

Private Key
−→ Signature
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Requirements to Design a PKC
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Requirements to Design a PKC

One-way Function

A B = f (A)

easy

hard

Definition
Easy: ∃ a polynomial-time algorithm that, on input m ∈ A outputs c = f (m).

Definition
Hard: Every probabilistic polynomial-time algorithm trying, on input c(= f (m)) to find
an inverse of c ∈ B under f , may succeed only with negligible probability.
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Requirements to Design a PKC

Examples of One-way Function

Cryptographic hash functions, viz., SHA-2 and SHA-3 (Keccak)
family.

The function
f : Zp → Zp,

x 7→ x224+17 + a1.x224+3 + a2.x3 + a3.x2 + a4.x + a5,

where p = 264 − 59 and each ai (∈ Zp) is 19-digit number for
1 ≤ i ≤ 5.
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Requirements to Design a PKC

Trapdoor One-way Function

Trapdoor One-way Function

A B = f (A)

easy

hard

easy with trapdoor
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Requirements to Design a PKC

Trapdoor One-way Function

Definition
A trapdoor one-way function is a one-way function f :M→ C,
satisfying the additional property that ∃ some additional information or
trapdoor that makes it easy for a given c ∈ f (M) to find out
m ∈ M : f (m) = c, but without the trapdoor this task becomes hard.
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Requirements to Design a PKC

Examples Trapdoor One-way Function

Integer Factorization: Given n ∈ Z+, find n = pe1
1 pe2

2 . . . pek
k where

the pi are pairwise distinct primes and each ei ≥ 0 for 1 ≤ i ≤ k. →
hard problem.

IFP
de f
=

{
Input : n > 1
Output : pe1

1 pe2
2 . . . pek

k

Example

Consider the number 37015031= 6079 × 6089

Consider the number 96679789= 9743 × 9923
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Requirements to Design a PKC

Examples Trapdoor One-way Function

Discrete Logarithm Problem: Given an abelian group (G, .) and
g ∈ G of order n. Given h ∈ G such that h = gx find x
(DLP(g, h)→ x). → hard problem.

The DLP over the multiplicative group
Z∗n = {a : 1 ≤ a ≤ n, gcd(a, n) = 1}. DLP may be defined as follows:

DLP
de f
=

{
Input : x, y ∈ Z∗n & n
Output : k s/t y ≡ xk mod n

Example
Let p = 97. Then Z∗97 is a cyclic group of order n = 96.
5 is a generator of Z∗97.
Now, 5x ≡ 35 mod 97, find the value of x.
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Requirements to Design a PKC

Example Trapdoor One-way Function

Computational Diffie-Hellman Problem: Given a = gx and b = gy

find c = gxy. (CDH(g, a, b)→ c ). → hard problem.

Elliptic Curve Discrete Logarithm Problem (ECDLP): E
denotes the collections of points on a elliptic curve and P ∈ E. Let
S be the cyclic subgroup of E generated by P. Given Q ∈ S, find
an integer x such that Q = x.P. → hard problem.
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Origin of PKC Diffie Hellman Key Exchange Protocol

DH Key Exchange
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Origin of PKC Diffie Hellman Key Exchange Protocol

DH Key Exchange

k is the shared secret key.
Knowing g, ga & gb, it is hard to find gab.
Idea of this protocol: The enciphering key can be made public
since it is computationally infeasible to obtain the deciphering key
from enciphering key.
This protocol was (supposed to be) the door-opener to PKC.

PKCS #3 (Version 1.4): Diffie-Hellman Key-Agreement Standard,
An RSA Laboratories Technical Note – Revised November 1,
1993.
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Origin of PKC Diffie Hellman Key Exchange Protocol

Discrete Logarithm mod 23 to the Base 5
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Origin of PKC Non-secret Encryption

Clifford Cocks, Malcolm Williamson & James Ellis developed
Non-secret Encryption between 1969 and 1974.

All were at GCHQ, so this stayed secret until 1997.
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Origin of PKC Non-secret Encryption

Chinese Remainder Theorem

Theorem
Suppose m1,m2, · · · ,mr ∈ Z

+ : gcd(mi,m j) = 1 for i , j.
Then x ≡ ai mod mi has ! solution mod M(=

∏r
i=1 mi), which is given

by

x ≡
r∑

i=1

ai.Mi.yi mod M,

where Mi =
M
mi

& yi = M−1
i mod mi for 1 ≤ i ≤ r.
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Origin of PKC Non-secret Encryption

Chinese Remainder Theorem

Problem
Find x s/t
x ≡ 5 mod 7, x ≡ 3 mod 11, x ≡ 10 mod 13
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Origin of PKC Non-secret Encryption

Non-secret Encryption

Key Generation

1 Select 2 large distinct primes p & q such that p - q − 1 and
q - p − 1.

Public key: n = pq.

2 Find numbers r & s, s/t p.r ≡ 1 mod (q − 1) and q.s ≡ 1
mod (p − 1).

3 Find u & v, s/t u.p ≡ 1 mod q and v.q ≡ 1 mod p.

Private key: (p, q, r, s, u, v).
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Origin of PKC Non-secret Encryption

Non-secret Encryption

Encryption

C ≡ Mn mod n for 0 ≤ M < n.

Decryption

1 a ≡ Cs mod p and b ≡ Cr mod q.
2 M ≡ a.q.v + b.p.u mod n.
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Origin of PKC Non-secret Encryption

Modular Exponentiation by The Repeated Squaring I

Compute bn mod m

1 Use a to denote the partial product.
2 We’ll have a ≡ bn mod m.
3 We start out with a = 1.
4 Let n0, n1, . . . nk−1 denote the binary digits of n, i.e.,

n = n0 + 2n1 + 4n2 + . . . + 2k−1nk−1.

5 If n0 = 1, change a to b (otherwise keep a = 1).
Then set b1 = b2 mod m

6 If n1 = 1, multiply a by b1 (and reduce mod m); otherwise keep a
unchanged.

7 Next square b1, and set b2 = b2
1 mod m
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Origin of PKC Non-secret Encryption

Modular Exponentiation by The Repeated Squaring II

8 If n2 = 1, multiply a by b2 (and reduce mod m); otherwise keep a
unchanged.

9 Continue in this way. You see that in the j-th step you have
computed b j ≡ b2 j

mod m.
10 If n j = 1, i.e., if 2 j occurs in the binary expansion of n, then you

include b j in the product for a (if 2 j is absent from n, then you do
not).

11 It is easy to see that after the (k − 1)-st step you’ll have the desired

a ≡ bn mod m.

Time(bn mod m) = O((log n)(log2 m)).
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Origin of PKC Non-secret Encryption

Modular Exponentiation by The Repeated Squaring

Example

Let us compute 5100 mod 33.

51 = 5
52 = 25
54 = 25 × 25 ≡ 31 mod 33
58 ≡ 31 × 31 ≡ 4 mod 33

516 ≡ 4 × 4 ≡ 16 mod 33
532 ≡ 16 × 16 ≡ 25 mod 33
564 ≡ 25 × 25 ≡ 31 mod 33
596 ≡ 31 × 25 ≡ 16 mod 33

5100 ≡ 16 × 31 ≡ 1 mod 33
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PKC RSA

RSA Key Generation

Generate two large distinct random primes p & q.

Compute n = pq and φ(n) = (p − 1)(q − 1).

Select a random integer e, 1 < e < φ(n) s/t gcd(e, φ(n)) = 1.

Compute the unique integer d, 1 < d < φ(n) s/t

ed ≡ 1 mod φ(n).

Public key is (n, e); Private key is (p, q, d).
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PKC RSA

RSA Encryption/Decryption

Encryption:

c ≡ me mod n,

Plaintext m and ciphertext c ∈ Zn.

Decryption:

m′ ≡ cd mod n.

PKCS #1 v2.2: RSA Cryptography Standard, RSA Laboratories –
October 27, 2012.
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PKC RSA

RSA Validation

We have

cd ≡ (me)d ≡ med ≡ m1+k.φ(n) mod n,

since ed ≡ 1 mod φ(n), where k is an integer.
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PKC RSA

RSA Validation

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Public Key Cryptography December 23, 2022 35 / 94



PKC RSA

RSA Validation

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Public Key Cryptography December 23, 2022 36 / 94



PKC RSA

Strong Prime Number

Definition

A prime p is called a strong prime if

(i) p − 1 has a large prime factor, say r,

(ii) p + 1 has a large prime factor, and

(iii) r − 1 has a large prime factor.
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Definition
For n ≥ 1, let φ(n) denote the number of integers in the interval [1, n]
which are relatively prime to n. The function φ is called the Euler phi
function.

Properties of Euler phi function

i. If p is a prime, then φ(p) = p − 1.

ii. The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then

φ(mn) = φ(m)φ(n).

iii. If n = pe1
1 pe2

2 · · · p
ek
k , is the prime factorization of n, then

φ(n) = n
(
1 −

1
p1

)(
1 −

1
p2

)
· · ·

(
1 −

1
pk

)
.
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Modular Arithmetic

The multiplicative group of Zn is Z∗n = {a ∈ Zn : gcd(a, n) = 1}.

Fermat’s theorem: If gcd(a, p) = 1, for a prime p then
ap−1 ≡ 1 mod p.

Let n be an odd composite integer. An integer
a, 1 ≤ a ≤ n − 1, 3 an−1 . 1 mod n is called a Fermat witness (to
compositeness) for n.
Euler’s theorem: If a ∈ Z∗n, then

aφ(n) ≡ 1 mod n.
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Pseudoprime

Definition
If n is an odd composite number and b is an integer s/t gcd(n, b) = 1 and
bn−1 ≡ 1 mod n then n is called a pseudoprime to the base b. The
integer b is called a Fermat liar (to primality) for n.

Example
1 The number n = 91 is a pseudoprime to the base b = 3,

∵ 390 ≡ 1 mod 91.

2 However, 91 is not a pseudoprime to the base 2,
∵ 290 ≡ 64 mod 91.

3 The composite integer n = 341(= 11 × 31) is a pseudoprime to the
base 2, ∵ 2340 ≡ 1 mod 341.
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Carmichael Number

Definition

A Carmichael number is a composite integer n s/t

bn−1 ≡ 1 mod n,

for every b ∈ Z∗n.

Example

1 n = 561 = 3 × 11 × 17 is a Carmichael number. This is the smallest Carmichael
number.

2 The following are Carmichael numbers:

(a) 1105 = 5 × 13 × 17
(b) 1729 = 7 × 13 × 19
(c) 2465 = 5 × 17 × 29
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Carmichael Number

A composite integer n is a Carmichael number iff the following two
conditions are satisfied:

(i) n is square-free, and

(ii) p − 1 divides n − 1 for every prime divisor p of n.

A Carmichael number must be the product of at least three distinct
primes.

There are an infinite number of Carmichael numbers.
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Quadratic Residue

Definition
Let a ∈ Z∗n; a is said to be a quadratic residue modulo n, if

∃ x ∈ Z∗n 3 x2 ≡ a mod n.

If no such x exists, then a is called a quadratic non-residue modulo n.

The set of all quadratic residues modulo n is denoted by Qn and the set
of all quadratic non-residues is denoted by Qn.

Let p be an odd prime and let α be a generator of Z∗p. Then a ∈ Z∗p
is a quadratic residue modulo p⇔ a ≡ αi mod p, where i is an
even integer.

It follows that #Qp =
p−1

2 and #Qp =
p−1

2 .
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Quadratic Residue

Example
α = 6 is a generator of Z∗13. The powers of α are

i 0 1 2 3 4 5 6 7 8 9 10 11
αi mod 13 1 6 10 8 9 2 12 7 3 5 4 11

Hence Q13 = {1, 3, 4, 9, 10, 12} and Q13 = {2, 5, 6, 7, 8, 11}.

Let n = p.q be a product of two distinct odd primes. Then a ∈ Z∗n is
a quadratic residue modulo n⇔ a ∈ Qp & a ∈ Qq.

It follows that #Qn =
(p−1)(q−1)

4 and #Qn =
3(p−1)(q−1)

4 .

Let n = 21.
Then Q21 = {1, 4, 16} and Q21 = {2, 5, 8, 10, 11, 13, 17, 19, 20}.
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The Legendre and Jacobi Symbols

Let p be an odd prime and a an integer. The Legendre symbol(
a
p

)
is defined to be

(
a
p

)
=


0, if p | a,
1, if a ∈ Qp,

−1, if a ∈ Qp.

Let n ≥ 3 be odd with prime factorization n = pe1
1 pe2

2 · · · p
ek
k . Then

the Jacobi symbol
(

a
n

)
is defined to be(a

n

)
=

(
a
p1

)e1
(

a
p2

)e2

· · ·

(
a
pk

)ek
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Properties of Legendre Symbol

(i)
(

a
p

)
= a(p−1)/2 mod p. In particular,

(
1
p

)
= 1 and

(
−1
p

)
= (−1)(p−1)/2.

Hence, −1 ∈ Qp if p ≡ 1 mod 4, and −1 ∈ Qp if p ≡ 3 mod 4.

(ii)
(

ab
p

)
=

(
a
p

) (
b
p

)
. Hence if a ∈ Z∗p, then

(
a2

p

)
= 1.

(iii) If a ≡ b mod p, then
(

a
p

)
=

(
b
p

)
.

(iv) Law of quadratic reciprocity: If q is an odd prime distinct from p,
then (

p
q

)
=

(
q
p

)
(−1)(p−1)(q−1)/4.
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Fermat Test for Primality – Probabilistic Algorithm

Fermat Test for Primality

Input: n
Output: YES if n is composite, NO otherwise.
Choose a random b, 0 < b < n
if gcd(b, n) > 1 then

return YES
end
else ;
if bn−1 . 1 mod n then

return YES
end
else ;
return NO
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The Euler Test – Probabilistic Algorithm

If n is an odd prime, we know that an integer can have at most two
square roots, mod n. In particular, the only square roots of 1
mod n are ±1.

If a . 0 mod n, a(n−1)/2 is a square root of an−1 ≡ 1 mod n, so
a(n−1)/2 ≡ ±1 mod n.

If a(n−1)/2 . ±1 mod n for some a with a . 0 mod n, then n is
composite.
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The Euler Test – Probabilistic Algorithm

For a randomly chosen a with a . 0 mod n, compute a(n−1)/2

mod n.

(i) If a(n−1)/2 ≡ ±1 mod n, declare n a probable prime, and optionally
repeat the test a few more times.

If n is large and chosen at random, the probability that n is prime is
very close to 1.

(ii) If a(n−1)/2 . ±1 mod n, declare n composite.

This is always correct.

The Euler test is more powerful than the Fermat test.
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(ii) If a(n−1)/2 . ±1 mod n, declare n composite.

This is always correct.

The Euler test is more powerful than the Fermat test.
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The Euler Test – Probabilistic Algorithm

The Euler test is more powerful than the Fermat test.

If the Fermat test finds that n is composite, so does the Euler test.

If n is an odd composite integer (other than a prime power), 1 has
at least 4 square roots mod n.

So we can have a(n−1)/2 ≡ β mod n, where β , ±1 is a square root
of 1.

Then an−1 ≡ 1 mod n. In this situation, the Fermat Test
(incorrectly) declares n a probable prime, but the Euler test
(correctly) declares n composite.
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Miller-Rabin Test – Probabilistic Algorithm

The Euler test improves upon the Fermat test by taking advantage
of the fact, if 1 has a square root other than ±1 mod n, then n
must be composite.

If a(n−1)/2 . ±1 mod n, where gcd(a, n) = 1, then n must be
composite for one of two reasons:

(i) If an−1 . 1 mod n, then n must be composite by Fermat’s Little
Theorem

(ii) If an−1 ≡ 1 mod n, then n must be composite because a(n−1)/2 is a
square root of 1 mod n different from ±1.

The limitation of the Euler test is that is does not go to any special
effort to find square roots of 1, different from ±1. The Miller-Rabin
test does this.
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Miller-Rabin Test – Probabilistic Algorithm

Miller-Rabin Test

Input: an odd integer n ≥ 3 and security parameter t ≥ 1.
Output: an answer “prime" or “composite" to the question: “Is n prime?"
Write n − 1 = 2s.r s/t r is odd.
for i = 1 to t do

Choose a random integer a s/t 2 ≤ a ≤ n − 2.
Compute y ≡ ar mod n
if y , 1 & y , n − 1 then

j← 1.
while j ≤ s − 1 & y , n − 1 do

Compute y← y2 mod n.
If y = 1 then return(“composite").
j← j + 1.

end
If y , n − 1 then return (“composite").

end

end
Return(“prime").
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Deterministic Polynomial Time Algorithm

The AKS Algorithm
Input: a positive integer n > 1
Output: n is Prime or Composite in deterministic polynomial-time
If n = ab with a ∈ N & b > 1, then output COMPOSITE.

Find the smallest r such that ordr(n) > 4(log n)2.
If 1 < gcd(a, n) < n for some a ≤ r, then output COMPOSITE.
If n ≤ r, then output PRIME.
for a = 1 to b2

√
φ(r) log nc do

if (x − a)n . (xn − a) mod (xr − 1, n),
then output COMPOSITE.

end
Return(“PRIME").
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PKC RSA

RSA Example

Suppose A wants to send the following message to B

RSAISTHEKEYTOPUBLICKEYCRYPTOGRAPHY
B chooses his n = 737 = 11 × 67. Then φ(n) = 660. Suppose he
picks e = 7, ⇒ d = 283.
∵ 262 < n < 263 ∴ the block size of the plaintext = 2.

m1 = ‘RS ′ = 17 × 26 + 18 = 460

c1 = 4607 ≡ 697 mod 737 = 1.262 + 0.26 + 21 = BAV

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Public Key Cryptography December 23, 2022 54 / 94



PKC RSA

RSA Example

RS AI ST HE KE YT OP UB
mb 460 8 487 186 264 643 379 521
cb 697 387 229 340 165 223 586 5

LI CK EY CR YP TO GR AP HY
294 62 128 69 639 508 173 15 206
189 600 325 262 100 689 354 665 673
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RSA Example

Suppose A wants to send the following message to B

power

B chooses his n = 1943 = 29 × 67. Then φ(n) = 1848. Suppose he
picks e = 701, ⇒ d = 29.
∵ 262 < n < 263 ∴ the block size of the plaintext = 2.
m1 = ‘po′ = 15 × 26 + 14 = 404, m2 = ‘we′ = 22 × 26 + 4 = 576, m3 =

‘ra′ = 17 × 26 + 0 = 442.
c1 = 404701 ≡ 1419 mod 1943 = 2.262 + 2.26 + 15 = ccp.
||ly, c2 = 344 = 13.26 + 6 = ang & c3 = 210 = 8.26 + 2 = aic.
The cipher text is

ccpangaic
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Security of RSA

Security

If we know n and φ(n), we can find p & q.

We have

φ(n) = pq − p − q + 1 = n − (p + q) + 1.

Since we know n, we can find p + q from the above equation.
Since we know pq = n and p + q, we can find p & q by factoring
the quadratic equation

x2 − (p + q)x + pq = 0.
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Security of RSA

Security of RSA relies on difficulty of finding d given n & e.

Breaking RSA is no harder than Factoring.

It is not secure against chosen ciphertext attacks (CCA).

RSA is secure against chosen plaintext attack (CPA).
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PKC RSA

IND-CCA

Security notion for encryption.

From a ciphertext c, an attacker should not be able to derive any
information from the corresponding plaintext m.

Even if the attacker can obtain the decryption of any ciphertext, c
excepted.

This is called indistinguishability against a chosen ciphertext
attack (IND-CCA).
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Choice of Encryption Key e

The encryption exponent e should not be too small.

Suppose e = 3 and there are 3 recipients having the same encryption exponent
3, but with different modulus ni, i = 1, 2, 3.

Then, ciphertexts yi ≡ M3 mod ni for i = 1, 2, 3 and send them to the recipients.

Suppose two of them, say n1 & n2, are not coprime. Then, gcd(n1, n2) is a
non-trivial factor of n1 & n2 and any adversary can factorise both of them.

So, we can always assume that ni for i = 1, 2, 3 are pairwise coprime.

If adversary gets hold of the messages yi, 1 ≤ i ≤ 3, (s)he can compute M3

mod n1n2n3 using Chinese remainder theorem since gcd(ni, n j) = 1 for i , j.

Since m < ni, m3 < n1n2n3. So, M3 mod n1n2n3 = M3 and the adversary can find
M by taking the cube root of M3 mod n1n2n3.
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PKC RSA

RSA in Practice – Optimal Asymmetric Encryption
Padding (OAEP)
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Optimal Asymmetric Encryption Padding (OAEP) I

To encrypt a message M of k2-bit, first concatenates the message
with 0k1 .
Expands the message to M||0k1 .
After that, select a random string r of length k0 bits.
Use it as the random seed for G(r) and computes

x1 = (M||0k1) ⊕G(r), x2 = r ⊕ H(x1)

If x1||x2 is a binary number bigger than n, Alice chooses another
random string r and computes the new values of x1 & x2.
If G(r) produces fairly random outputs, x1||x2 will be less than n in
binary with a probability greater than 1

2 .
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Optimal Asymmetric Encryption Padding (OAEP) II

After getting a string r with x1||x2 < n, Alice then encrypts x1||x2 to
get the ciphertext

E(M) = (x1||x2)e ≡ c mod n
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PKC ElGamal

ElGamal PKC in Z∗p

Key Generation:
< α >= Z∗p, P = Z

∗
p & C = Z∗p × Z

∗
p.

β ≡ αa mod p.
Public : p, α, β and Private : a.

Encryption:
Select a random k ∈ Zp−1.
Enck(x) = (y1, y2)

y1 ≡ α
k mod p, y2 ≡ x.βk mod p.

Decryption:
Deck(y1, y2) ≡ y2.(ya

1)−1 mod p.
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ElGamal PKC in Z∗p

Example
Let p = 29 and α = 2, α is a primitive element mod 29.
Let a = 5,∴ β ≡ 25 mod ≡ 3 mod 29.

Public Key: (29, 2, 3) and Private Key: 5

Plaintext: x = 6 & random number k = 14 ∈ Z28

y1 ≡ 214 ≡ 28 mod 29 & y2 ≡ 6.314 ≡ 23 mod 29

Ciphertext: (28, 23).
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PKC Elliptic Curve

Elliptic Curves

Elliptic curve1 E over field K is defined by

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, ai ∈ K

The set of K-rational points E(K) is defined as

E(K) = {(x, y) ∈ K × K : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6} ∪ {O}

Theorem
There exists an addition law on E and the set E(K) with that addition
forms a group.

1It is called a (generalized) Weierstrass equation. The equation defines a cubic
curve called a Weierstrass curve.
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Elliptic Curves I

1 Let K be a field of characteristic , 2, 3, and let x3 + ax + b be a
cubic polynomial with no multiple roots
(−16(4a3 + 27b2) , 0⇒ 4a3 + 27b2 , 0).
An elliptic curve over K is the set of points (x, y) with x, y ∈ K which
satisfy the equation

y2 = x3 + ax + b

together with a single element denoted O and called the point at
infinity.
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Elliptic Curves II

2 If char K = 2, then an elliptic curve over K is the set of points
satisfying an equation of type either

y2 + cy = x3 + ax + b

or
y2 + xy = x3 + ax + b

together with the point at infinity O.
3 If char K = 3, then an elliptic curve over K is the set of points

satisfying the equation

y2 = x3 + ax2 + bx + c

together with the point at infinity O.
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Addition Law on Elliptic Curves
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Addition Law on Elliptic Curves

Suppose E is a non-singular elliptic curve.
The point at infinity O, will be the identity element, so
P + O = O + P = P ∀ P ∈ E.
Suppose P,Q ∈ E, where P = (x1, y1) & Q = (x2, y2)

(i) x1 , x2

L is the line through P and Q.
L intersects E in the two points P and Q
L will intersect E in one further point R′.
If we reflect R′ in the x-axis, then we get a point R.

P + Q = R.
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PKC Elliptic Curve

(ii) x1 = x2 & y1 = −y2

(x, y) + (x,−y) = O

(iii) x1 = x2 & y1 = y2

Draw a tangent line L through P
Follow step (i)
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Addition Law on Elliptic Curves
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Addition Law on Elliptic Curves

Suppose that we want to add the points P1 = (x1, y1) & P2 = (x2, y2)
on the elliptic curve

E : y2 = x3 + ax + b.

Let the line connecting P1 to P2 be

L : y = λx + ν

Explicitly, the slope and y-intercept of L are given by

λ =


y2−y1
x2−x1

if P1 , P2
3x2

1+a
2y1

if P1 = P2
and ν = y1 − λx1
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Addition Law on Elliptic Curves

Thus, we have
P1 + P2 = (x3,−y3),

where x3 = λ
2 − x1 − x2 and y3 = λx3 + ν.

If P1 , P2 and x1 = x2, then P1 + P2 = O.

If P1 = P2 and y1 = 0, then P1 + P2 = 2P1 = O.

Visualizing Elliptic Curve Cryptography
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Elliptic Curves over Finite Fields
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Elliptic Curves over Finite Fields

Problem

Let E be the elliptic curve y2 = x3 + x + 1 over F11. Then write down all
the points of E over F11. Draw the elliptic curve E along with the grid.
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PKC Elliptic Curve

Elliptic Curves over Finite Fields

Solution
First compute square of all the elements of F11:

12 = 1, 22 = 4, 32 = 9, 42 = 5, 52 = 3, 62 = 3, 72 = 5, 82 = 9, 92 = 4, 102 = 1

Q11 = {1, 3, 4, 5, 9}
x = 0⇒ y2 = 1⇒ y = ±1
x = 1⇒ y2 = 3⇒ y = 5 or 6
x = 2⇒ y2 = 0⇒ y = 0
x = 3⇒ y2 = 9⇒ y = 3 or 8
x = 4⇒ y2 = 3⇒ y = 5 or 6
x = 5⇒ y2 = 10
x = 6⇒ y2 = 3⇒ y = 5 or 6
x = 7⇒ y2 = 10
x = 8⇒ y2 = 4⇒ y = 2 or 9
x = 9⇒ y2 = 2
x = 10⇒ y2 = 10
E(F11) = {O, (0, 1), (0, 10), (1, 5), (1, 6), (2, 0), (3, 3), (3, 8), (4, 5), (4, 6), (6, 5), (6, 6), (8, 2), (8, 9)}
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PKC Elliptic Curve

NIST’s Primes for ECC

p192 = 2192 − 264 − 1
p224 = 2224 − 296 + 1
p256 = 2256 − 2224 + 2192 + 296 − 1
p384 = 2384 − 2128 − 296 + 232 − 1
p521 = 2521 − 1

W − 25519 = 2255 − 19
W − 448 = 2448 − 2224 − 1

Edwards25519 = 2255 − 19
Edwards448 = 2448 − 2224 − 1

Recommendations for Discrete Logarithm-Based Cryptography:
Elliptic Curve Domain Parameters
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

First choose two public elliptic curve points P and Q s/t

Q = sP,

where s is the private key.
To encrypt choose a random k
Enck(m) = (y1, y2)

y1 = kP, y2 = m + kQ.

Decryption:

Deck(y1, y2) = y2 − s.y1

Dhananjoy Dey (Indian Institute of Information Technology, Lucknowddey@iiitl.ac.in)Public Key Cryptography December 23, 2022 80 / 94



PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

The plaintext space in general may not consist of the points on the
curve E.

So, we convert the plaintext as an arbitrary element in Zp.

After that, we can apply a suitable hash function h : E → Zp is
applied to kQ
To encrypt a messaxe m choose a random k
The ciphertext c = Enck(m) = (y1, y2)

y1 = kP, y2 ≡ (m + h(kQ)) mod p.

Decryption:

Compute h(kQ)
Compute c ≡ (y2 − h(kQ)) mod p
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Key Generation

Let E be an elliptic curve defined over Zp (where p > 3 is prime) s/t
E contains a cyclic subgroup H = 〈P〉 of prime order n in which the
Discrete Logarithm Problem is infeasible.
Let h : E → Zp be a secure hash function.
Let P = Zp and C = (Zp × Z2) × Zp. Define

K = {(E, P, s,Q, n, h) : Q = sP},

where P and Q are points on E and s ∈ Z∗n . The values E, P,Q, n,
and h are the public key and s is the private key.
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PKC Elliptic Curve

ElGamal Cryptosystems on Elliptic Curves

Encryption

To encrypt a message m sender selects a random number k ∈ Z∗n
and compute the ciphertext

y = eK(m, k) = (y1, y2) = (POINT-COMPRESS(kP),m + h(kQ)
mod p),

where y1 ∈ Zp × Z2 and y2 ∈ Zp.

Decryption

dK(y) = y2 − h(R) mod p,

where R = sPOINT-DECOMPRESS(y1).
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PKC Elliptic Curve

The Many Flaws of Dual_EC_DRBG
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PKC Elliptic Curve

Key Comparison

Symmetric Based on Based on Based on
Key Size Factoring DLP ECDLP
(in bits ) (in bits ) (in bits ) (in bits )

80 1024 1024 160

112 2048 2048 224

128 3072 3072 256

192 7680 7680 384

256 15360 15360 512
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Digital Signature

Outline
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Digital Signature

Signature Scheme

Definition

A signature scheme is a five-tuple (P,A,K ,S,V), where the following conditions are
satisfied:

(i) P is a finite set of possible messages
(ii) A is a finite set of possible signatures
(iii) K , the keyspace, is a finite set of possible keys
(iv) For each K ∈ K , there is a signing algorithm sigK ∈ S and a corresponding

verification algorithm verK ∈ V. Each sigK : P → A and
verK : P ×A → {true, f alse} are functions s/t the following equation is satisfied
for every message x ∈ P and for every signature y ∈ A

verK =

{
true if y = sigK(x)
false if y , sigK(x)

A pair (x, y) with x ∈ P and y ∈ A is called a signed message.
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Digital Signature
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Digital Signature

RSA Signature Scheme

Signature Generation

A signs a message m. Any entity B can verify A’s signature and recover
the message m from the signature.

Compute m̃ = R(m), where R :M→ Zn.
Compute s ≡ m̃d mod n.
A’s signature for m is s.

Signature Verification

To verify A’s signature s and recover the message m, B should:

Obtain A’s authentic public key (n, e).
Compute m̃ ≡ se mod n.
Verify that m̃ ∈ range ofM; if not, reject the signature.
Recover m = R−1(m̃).
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Digital Signature Digital Signature Algorithm (DSA)

DSA

Key Generation

1 Choose a hash function h.
2 Decide a key length L.
3 Choose prime q with with same number of bits as output of h.
4 Choose α-bit prime p such that q|(p − 1).
5 Choose g such that gq ≡ 1 mod p.

Choose x : 0 < x < q.
Calculate : y ≡ gx mod p.
(p, q, g, y) −→ Public Key
x −→ Private Key
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Digital Signature Digital Signature Algorithm (DSA)

DSA

Signature Generation

1 Generate random k such that 0 < k < q.
2 Calculate r ≡ (gk mod p) mod q.
3 Calculate s ≡ (k−1(h(m) + xr)) mod q.
4 Signature is (r, s).

Signature Verification

1 w ≡ s−1 mod q.
2 u1 ≡ (h(m).w) mod q.
3 u2 ≡ rw mod q.
4 v ≡ (gu1 .yu2 mod p) mod q.
5 Verify v = r.
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Digital Signature Digital Signature Algorithm (DSA)

Schnorr Signature Scheme

Key Generation

Let p be a prime s/t the DLP in Z∗p is intractable, and let q be a
prime and q | (p − 1). Let α ∈ Z∗p be a qth root of unity modulo p. Let
P = {0, 1}∗, A = Zq × Zq, and define

K = {(p, q, α, a, β) : β ≡ αa mod p},

where 0 ≤ a ≤ q − 1.

The values p, q, α, and β are the public key, and a is the private
key.

Finally, let h : {0, 1}∗ → Zq be a secure hash function.
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Digital Signature Digital Signature Algorithm (DSA)

Schnorr Signature Scheme

Signature Generation

Signer first selects a (secret) random number k, 1 ≤ k ≤ q − 1, define

sigK(x, k) = (γ, δ),

where
γ = h(x||αk mod p) & δ = k + aγ mod q.

Verification

For x ∈ {0, 1}∗ and γ, δ ∈ Zq, verification is done by performing the following
computations:

verK(x, (γ, δ)) = true ⇐⇒ h(x||αδβ−γ mod p) = γ.
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The End

Thanks a lot for your attention!
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