Complexity Theory in Cryptography J

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow
ddey@iiitl.ac.in

December 23, 2022

DLERELOIDEA(LGIELNLESGUCYI#LIlnE| Complexity Theory in Cryptography December 23, 2022 1/48



.
Outline

@ Introduction
@ Time Estimation

e Notations

Q Complexity Classes
@ Time Complexity

DLERELGIDER(LGGIELNLESGUCYI#LIInE| Complexity Theory in Cryptography December 23, 2022 2/48



Introduction

Definition

@ Computational complexity theory is the study of the minimal
resources needed to solve computational problems.
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Introduction

Definition

@ Computational complexity theory is the study of the minimal
resources needed to solve computational problems.

e Two fundamental questions:
@ Is a problem P intrinsically “easy” or “difficult" to solve?

@ Giventwo problems, P; and P,, which is easier to solve?

@ Running time - the number of basic (or primitive) operations (or
steps) taken by an algorithm.
@ The running time of an algorithm usually depends on the size of the input.

@ Space complexity - to measure the amount of temporary storage
used when performing a computational task.
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Introduction

Representation of a Number

@ Numbers in different bases
Any number n between b*~! and b is a k-digit number to the base
b.

@ Number of digits

= [log, n]+ 1.

@ Number of bits

= [log, n]+ 1 ~[1.44 X Inn]+ 1.
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Introduction

Size of Some Mathematical Objects

Example

Q IfA= [aij]m is @ matrix with » rows, s columns, where a;; € Z,,,

then the size of A
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Introduction

Size of Some Mathematical Objects

Example

Q IfA= [aij]m is @ matrix with » rows, s columns, where a;; € Z,,,

then the size of A

= rs(1 + [log, n]) bits.

@ If fis a polynomial of degree d, each coefficient € Z,, then the
size of f

= (d + 1)(1 + [log, n]) bits.
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Introduction Time Estimation

Outline

0 Introduction
@ Time Estimation
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Number of Steps for Doing Arithmetic

Number of steps required to add 2 integers a & b
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Number of Steps for Doing Arithmetic

Number of steps required to add 2 integers a & b

Input: integersa > b >0
Output: a + b
Algorithm:

while (b # 0){
a=a++
b=b--

}

output a
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Number of Steps for Doing Arithmetic

Number of steps required to add 2 integers a & b

Input: integersa > b >0
Output: a + b
Algorithm:

while (b # 0){
a=a++
b=b--

}

output a

Number of operations = 3b + 1
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Bit Operation for Doing Arithmetic

Number of bit operations required to add 2 k-bit integers n & m
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Bit Operation for Doing Arithmetic

Number of bit operations required to add 2 k-bit integers n & m

@ Look at the top and bottom bit and also at whether there’s a carry above the top
bit.

If both bits are 0 and there is no carry, then put down 0.

If either both bits are 0 and there is a carry; or one of the bits is 0, the other is 1
and there is no carry, then put down 1.

If either one of the bits is 0, the other is 1, and there is a carry; or both bits are 1
and there is no carry then put down 0, put a carry in the next column.

© 6 66

If both bits are 1 and there is a carry, then put down 1, put a carry in the next
column.
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Bit Operation for Doing Arithmetic

Number of bit operations required to add 2 k-bit integers n & m

@ Look at the top and bottom bit and also at whether there’s a carry above the top
bit.

If both bits are 0 and there is no carry, then put down 0.

If either both bits are 0 and there is a carry; or one of the bits is 0, the other is 1
and there is no carry, then put down 1.

If either one of the bits is 0, the other is 1, and there is a carry; or both bits are 1
and there is no carry then put down 0, put a carry in the next column.

© 6 66

If both bits are 1 and there is a carry, then put down 1, put a carry in the next
column.

Time(n + m) = k-bit operations.
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Bit Operation for Doing Arithmetic

Number of bit operations required to add 2 k-bit integers n & m
Input: n = mgng—y -+ -nany & m = mypmyg—y -+ - mpm;
Output: n + m in binary.

Algorithm: ¢ « 0
for(i = 1 to k){
if sum(n;,m;,c)=1or3
thend; « 1
elsed; <0
if sum(n;,mj,c)>2
then ¢ « 1
else ¢ « 0}
if ¢ = 1 then output 1dydi-; - - - dad,
else output dydy_; - - - dad; .
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Bit Operation for Doing Arithmetic

@ Number of bit operations required to add 2 k-bit integers n & m
iv. If either

@ one of the bits is 0, the other is 1, and there is a carry, or
@ both bits are 1 and there is no carry,

then put down 0, put a carry in the next column.
v. If both bits are 1 and there is a carry, then put down 1, put a carry in
the next column.
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Bit Operation for Doing Arithmetic

@ Number of bit operations required to multiply a k-bit integer »n by
an ¢-bit integer m
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Bit Operation for Doing Arithmetic

@ Number of bit operations required to multiply a k-bit integer »n by
an ¢-bit integer m

at most ¢ rows can be obtained

each row consists of a copy of » shifted to the left a certain distance
suppose there are ¢’ < ¢ rows.

multiplication task can be broken down into ¢ — 1 additions

moving down from the 2" row to the ¢ row, adding each new row
to the partial sum of all of the earlier rows

each addition takes at most k-bit operations

total number of bit operations is at most ¢ x k.

€60 06660
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Bit Operation for Doing Arithmetic

@ Number of bit operations required to multiply a k-bit integer »n by
an ¢-bit integer m

at most ¢ rows can be obtained

each row consists of a copy of » shifted to the left a certain distance
suppose there are ¢’ < ¢ rows.

multiplication task can be broken down into ¢ — 1 additions

moving down from the 2" row to the ¢ row, adding each new row
to the partial sum of all of the earlier rows

each addition takes at most k-bit operations

total number of bit operations is at most ¢ x k.

€60 06660

Time(n x m) < k¢-bit operations.
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Bit Operation for Doing Arithmetic

@ Number of bit operations required to multiply two n-bit integers
x&y
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Bit Operation for Doing Arithmetic

@ Number of bit operations required to multiply two n-bit integers
x&y
@ Letn =2z. Then

X=2tX1+X0&y=2ty1+yo
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Bit Operation for Doing Arithmetic

@ Number of bit operations required to multiply two n-bit integers
x&y

@ Letn =2 Then

X=2tX1+X0&y=2ty1+yo

xy = 2% +uy 2" + ug

where uy = x9.y0, Uz = x1.y1 & uy = (xo + x1).(vo + y1) — ug — us.
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Bit Operation for Doing Arithmetic

Complexity of Integer Multiplication

Method Year

# Operations

Karatsuba 1962 < C.nl°%2?

Ofman

Toom 1963 < C.n'*e

Schénhage 1971 < C.(nlognloglogn---25Cilog'm)
Strassen < C.(nlognloglogn)

Flrer 2007 < C.(nlogn - 25Cilog’n)

Anindya De 2008

< C.(nlogn - 25Cilog’m)
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Bit Operation for Doing Arithmetic

Example

An upper bound for the number of bit operations required to compute
nl.
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Bit Operation for Doing Arithmetic

Example

An upper bound for the number of bit operations required to compute
nl.

Q Atthe (j- 1) step (j=2,3,---,n— 1), you are multiplying ;! by
j+ 1.

n — 2 steps requires to compute n!, where each step involves
multiplying a partial product by the next integer.

Product of n k-bit integers will have at most nk bits.

At each step, we require multiplication of an integer with at most
bits by an integer with at most nk bits.

The total number of bit operations is bounded by (n — 2)nk>.

© 66 ©
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Bit Operation for Doing Arithmetic

Example

An upper bound for the number of bit operations required to compute
nl.

Q Atthe (j- 1) step (j=2,3,---,n— 1), you are multiplying ;! by
j+ 1.

n — 2 steps requires to compute n!, where each step involves
multiplying a partial product by the next integer.

Product of n k-bit integers will have at most nk bits.

At each step, we require multiplication of an integer with at most
bits by an integer with at most nk bits.

The total number of bit operations is bounded by (n — 2)nk>.
Time(to compute n!) < n*(In n)>.

© 66 ©
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Introduction Time Estimation

The Traveling Salesman Problem
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Introduction Time Estimation

The Traveling Salesman Problem

Given a list of n cities, ¢y, ¢z, -+ ,¢, and an n x n symmetric matrix D of
distances, such that

D;; = distance from city c; to city cj,

determine an optimal shortest tour visiting each of the cities exactly
once.
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Introduction Time Estimation

The Traveling Salesman Problem

Problem

Given a list of n cities, ¢y, ¢z, -+ ,¢, and an n x n symmetric matrix D of
distances, such that

D;; = distance from city c; to city cj,

determine an optimal shortest tour visiting each of the cities exactly
once.

| A

Solution
Try all possible tours in turn and choose the shortest one.
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Introduction Time Estimation

The Traveling Salesman Problem

Problem

Given a list of n cities, ¢y, ¢z, -+ ,¢, and an n x n symmetric matrix D of
distances, such that

D;; = distance from city c; to city cj,

determine an optimal shortest tour visiting each of the cities exactly
once.

| A

Solution
Try all possible tours in turn and choose the shortest one.

No. of possible tours
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Introduction Time Estimation

The Traveling Salesman Problem

Problem

Given a list of n cities, ¢y, ¢z, -+ ,¢, and an n x n symmetric matrix D of
distances, such that

D;; = distance from city c; to city cj,

determine an optimal shortest tour visiting each of the cities exactly
once.

| A

Solution
Try all possible tours in turn and choose the shortest one.

No. of possible tours = n!.
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Definition
Let f, g: N >R, g(x) >0V x > a, where a € N. Then f = O(g) means that £

8(x)
is bounded V x > 4, i.e., 3 a constant M > 0 such that

[f<Mglx) Yx=>a.
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Big-0

Let £, g: N > R, g(x) >0 ¥ x > a, where a € N. Then f = O(g) means that £
is bounded V x > 4, i.e., 3 a constant M > 0 such that

[f<Mglx) Yx=>a.

Example
Let f(n) =2.n° + 3. +4n+5 & g(n) = n’.
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Big-0

Let £, g: N > R, g(x) >0 ¥ x > a, where a € N. Then f = O(g) means that £
is bounded V x > 4, i.e., 3 a constant M > 0 such that

[f<Mglx) Yx=>a.

Example
Let f(n) =2.n° +3.n> +4n+5 & g(n) = n’.
Then f = O(g), fortake a =5, M = 3.

The notation Big O represents an upper bound of the computational
complexity of an algorithm in the worst-case scenario.
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_ Nowtom |
Big-0

@ g is simpler function than f and it does not increase much faster
than f.
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_ Nowtom |
Big-0

@ g is simpler function than f and it does not increase much faster
than f.

Example

Q 2 = O0n® + n%in n + 595)
Q > = 0"

Q " = 0n?
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_ Nowtom |
Big-0

@ g is simpler function than f and it does not increase much faster
than f.

Example
Q 2 = O0n® + n%in n + 595)
Q > = 0"
Q " = 0
Q fm(=ay+ain+...+amn?) = On?
Q inn = 0@ forany s e R*
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Complexity of Arithmetic Operations
@ Time(k-bit + k-bit) = O(k)
© Time(k-bit - k-bit) = O(k)

(

(

© Time(k-bit xk-bit) = O(k?)

Q Time(k-bit k-bit) = O(k?)
(

Q Time(n!) = O(n*(In n)*)
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Complexity of Integer Multiplication

Method Year

# Operations

Karatsuba 1962 O(n'°%7)

Ofman

Toom 1963  O(n'*€)

Schénhage 1971 O((nlognloglogn - --29Uog my)
Strassen O((nlognloglogn))

Farer 2007 O((nlogn - 200g m))

Anindya De 2008

O((nlog n - 2000g" M)
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-
Euclidean Algorithm

Input: (a, b) [a > b]
Output: gcd(a, b)

ro < a,

ry « b;

me«1;

while{r,, # 0} {

Gm < 2L

Tm+1 < Tm—1 — qm-Tm;
me—m-1;

}
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-
Euclidean Algorithm

mee—m-—1;
return gi,....qm; rm
Im = ged(a, b)
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-
Euclidean Algorithm

mee—m-—1;
return gi,....qm; rm
Im = ged(a, b)

Time to compute ged(a, b) = O((In a)z).
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-
Extended Euclidean Algorithm

Proposition

Letd = gcd(a,b), where a > b.
Then3u&veZ : d=ua+bv.

= gcd of 2 numbers can be expressed as a linear combination of the
numbers with integer coefficients.
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-
Extended Euclidean Algorithm

Proposition

Letd = gcd(a,b), where a > b.
Then3u&veZ : d=ua+bv.

= gcd of 2 numbers can be expressed as a linear combination of the
numbers with integer coefficients.

Time to compute u & v = O((In a)z).
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Complexity in Z,

Let m; & m, € Z, and size(n) = k-bit.

Q Time(my +my) modn = O(k)

Q Time(m; —my) modn = O(k)

©Q Time(my x my) modn = OKk?)
Q Time(m)™ modn =
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Complexity in Z,

Let m; & m, € Z, and size(n) = k-bit.

Q Time(my +my) modn = O(k)
Q Time(m; —my) modn = O(k)
©Q Time(my x my) modn = OKk?)
Q Time(m)™ modn = OK?)
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Complexity in Z,

Let m; & m, € Z, and size(n) = k-bit.

Q Time(my +my) modn = O(k)
Q Time(m; —my) modn = O(k)
©Q Time(my x my) modn = OKk?)
Q Time(m)™ modn = OK?)

Q Time(m)) mod n = O((In c)k?)
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Small-o

Let f and g be 2 +ve real valued functions such that

lim M — 0.

n—oo g(n)

Then we say that f = o(g), = f(n) < g(n) whenn is large.

@ A function f is negligible if f = o(1/g) for any polynomial g(n) = n¢
@ The notation g = Q(f) means exactly the same thing as f = O(g).

@ If f =0(g) and f = Q(g) then we use the notation
f=0(g) = Ci.gn) < f(n) < Cr.g(n) forn > ng,C; € R*.

DLERELGIDER(LGGIELNLESGUCYI#LIInE| Complexity Theory in Cryptography December 23, 2022 24/48



Example

Q Vi = o

Q@ nininn = o(ninn)
Qnlnn=Q3nmn+5nInlnn+?2)

Q length(n!) = O(n In n)
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From Polynomial to Exponential Time

@ Polynomial time algorithm: computational complexity is O(n*), where n
is the size of the input in bits and k € R*.

@ Exponential time algorithm: computational complexity is of the form
O(c/™) where ¢ > 1 is a constant and f is a polynomial function on the
size of the input n € N.

© Subexponential time algorithm: computational complexity for input
geNajs

Ly(a,c) = O(e(cho(l))(lnq)”(ln]nq)"”),

wherea € R, 0 < @ < 1 and ¢ is a positive constant.

4Note that ¢ is the input to the algorithm and not the size of the input.
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Complexity Classes

Decision Problem

‘ Input '

el

DLEREROIDETR(LGGIELNLESGUICYI#LIlnE  Complexity Theory in Cryptography December 23, 2022 27/48



Complexity Classes

Decision Problem

Input

C—

'

e
=
YES | NO

i

Example

Q Input: N e Z*
Question: Is N a prime number?
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Complexity Classes

Decision Problem

Input i
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vEs | NO

Example
Q Input: N e Z*
Question: Is N a prime number?

©Q Input: N, keZ*
Question: Does N have a factor M, where 2 < M < k?
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Complexity Classes Time Complexity

Outline

Q Complexity Classes
@ Time Complexity
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L and N L-Space

£L- Logarithmic Space

@ The class of decision problems solvable by a Turing machine
restricted to use an amount of memory logarithmic in the size of
the input, n.

N £- Nondeterministic Logarithmic-Space

@ Has the same relation to £ as NP does to P.
@ NL=co-NL.
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Complexity Classes Time Complexity

P, NP, NPC NP-hard

Definition
A decision problem P € P of polynomial time problems if 3 a polynomial
p and an algorithm such that if for an instance of P with input size < n,
the algorithm answer the question correctly in time < p(n).

Example

Instance: n € Z*
Question: Is n prime?
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Complexity Classes Time Complexity

P, NP, NPC NP-hard

Definition
A decision problem P € P of polynomial time problems if 3 a polynomial
p and an algorithm such that if for an instance of P with input size < n,
the algorithm answer the question correctly in time < p(n).

Example

Instance: n € Z*
Question: Is n prime?
Answer: Yes, [O((log n)®) using AKS algo]
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P,NP, NPC NP-hard

Definition

A decision problem P € NP if for given any instance of P with some
extra information, the YES answer can be verified in polynomial time.

Definition
A decision problem P € co-N® if for given any instance of P with some
extra information, the NO answer can be verified in polynomial time.

Example

Instance: n € Z*
Question: Is n composite?
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P,NP, NPC NP-hard

A decision problem P € NP is said to be NP-complete if every other
problem Q € NP can be reduced to P in polynomial time, i.e., Q <p P.

LetTI andT be 2 decision problems. We say that11 <p T, ifI1 can be
solved in polynomial time given access to an oracle that solvesT.

A

Informally, if IT <p T’ = IT is not harder than T.

DLEREROIDER(LGGIELNLSGUCYI#LIInE| Complexity Theory in Cryptography December 23, 2022 32/48



P,NP, NPC NP-hard

Example
@ Input: A quadratic polynomial p € Z[x]
Question: Does p(x) have 2 distinct real roots?

@ Input: NeZ
Question: Is N € Z*+
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P,NP, NPC NP-hard

Example
@ Input: A quadratic polynomial p € Z[x]
Question: Does p(x) have 2 distinct real roots?

@ Input: NeZ
Question: Is N € Z*+

Example
PRIMALITY <p FACTORING J
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Complexity Classes Time Complexity

P, NP, NPC NP-hard

Definition
A decision or search problem P is NP-hard if 3 some NP-complete
problem Q that poly-time reduces to P, i.e., Q <p P

Example

Input: A finite cyclic group G of order n, a generator « of G and an
elementp e G.
Question: Find the integer x, 0 < x < n— 1, such that o* = 3.
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NP-hard Problems

Example

o Integer Factorization: Given n € Z*, find n = p{'p5* ... p* where
the p; are pairwise distinct primes and each e; > 1 for 1 <i < k.
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NP-hard Problems

Example

o Integer Factorization: Given n € Z*, find n = p{'p5* ... p* where
the p; are pairwise distinct primes and each e; > 1 for 1 <i < k.

@ Discrete Logarithm Problem: Given an abelian group (G, .) and
g € G of order n. Given h € G such that i = g* find
x (DLP(g,h) — x).
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NP-hard Problems

Example

o Integer Factorization: Given n € Z*, find n = p{'p5* ... p* where
the p; are pairwise distinct primes and each e; > 1 for 1 <i < k.

@ Discrete Logarithm Problem: Given an abelian group (G, .) and
g € G of order n. Given h € G such that i = g* find
x (DLP(g,h) — x).

@ Computational Diffie-Hellman Problem: Givena =g*and b = ¢”
find ¢ = ¢¥. (CDH(g,a,b) — c¢).
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Complexity Classes Time Complexity

NP-hard Problems

Example
@ Elliptic Curve Discrete Logarithm Problem (ECDLP): E
denotes the collections of points on a elliptic curve and P € E. Let
S be the cyclic subgroup of E generated by P. Given Q € S, find

an integer x such that Q = x.P.

36/48
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NP-hard Problems

Example

@ Elliptic Curve Discrete Logarithm Problem (ECDLP): E
denotes the collections of points on a elliptic curve and P € E. Let
S be the cyclic subgroup of E generated by P. Given Q € S, find
an integer x such that Q = x.P.

@ Subset Sum Problem (SSP): {a;,a>,...,a,} ¢ Z* called a
knapsack set, s € Z*, determine whether or not x; € {0, 1}, for
1 <i < nsuch that

n

E Xi.a; = S.

i=1
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Complexity Classes Time Complexity

NP-complete Problem

Example

@ Hilbert’s Nullstellensatz (HN): Given
D1, D2, -+ Pm € K[x1,x2,...,x,], where K is a finite field. Does
there exists (ay, as, ..., a,) € K" such that:

pl(al’QQ’---aan)z()"" aPm(a'l,a’Z,---aa'n) =0.
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Complexity Classes Time Complexity

NP-complete Problem

Example

@ Hilbert’s Nullstellensatz (HN): Given
D1, D2, -+ Pm € K[x1,x2,...,x,], where K is a finite field. Does
there exists (ay, as, ..., a,) € K" such that:

pl(al,QZ’---,an)=O,"' aPm(a'l,a’Z,---aa'n) =0.

It remains NP-complete with input polynomials of total degree 2.

v
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P,NP, NPC NP-hard

\ NP-Hard | | NP-Hard

P=NP=
NP-Complete
E*
%.
P = NP P = NP
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RP, co-RP, ZPP, BPP

A language L belongs to RP iff 3 a PTM, M, with polynomial running
time such that on any input x € X7:

@ if x € L then Pr[M accepts x] > 1/2;
@ if x ¢ L then Pr[M accepts x] = 0.
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RP, co-RP, ZPP, BPP

A language L belongs to RP iff 3 a PTM, M, with polynomial running
time such that on any input x € X7:

@ if x € L then Pr[M accepts x] > 1/2;
@ if x ¢ L then Pr[M accepts x] = 0.
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RP, co-RP, ZPP, BPP

Input: n e Z*.
Question: is n composite?

COMPOSITE € RP. \
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The Miller-Rabin Primality Test

Input: an odd integer n > 3.
Algorithm:
choose a g Z;
if gcd(a,n) # 1 output ‘composite’
let n — 1 = 2%.m, with m odd
if @™ = 1 mod n output ‘prime’
fori=0t0 k-1
if &% = —1 mod n then output ‘prime’
next i
output ‘composite’.
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Complexity Classes Time Complexity

The Miller-Rabin Primality Test

Theorem

The Miller-Rabin primality test is a probabilistic polynomial time
algorithm. Given input n

@ ifn is prime then the algorithm always outputs ‘prime’;
@ ifn is composite then

Pr(the algorithm outputs ‘composite’] >

N[ =
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Complexity Classes Time Complexity

The Miller-Rabin Primality Test

Theorem

The Miller-Rabin primality test is a probabilistic polynomial time
algorithm. Given input n

@ ifn is prime then the algorithm always outputs ‘prime’;
@ ifn is composite then

Pr(the algorithm outputs ‘composite’] >

N[ =

Hence

COMPOSITE € RP or equivalently PRIME € co-RP.
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RP, co-RP, ZPP, BPP

@ If L € RP then 3 a polynomial time PTM for L which is always
correct when it accepts an input but which will sometimes
incorrectly reject an input x € L.

@ ||ly if L € co-RP then 3 a polynomial time PTM for L which is
always correct when it rejects an input but which will sometimes
incorrectly accept an input x ¢ L.
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RP, co-RP, ZPP, BPP

@ If L € RP then 3 a polynomial time PTM for L which is always
correct when it accepts an input but which will sometimes
incorrectly reject an input x € L.

@ ||ly if L € co-RP then 3 a polynomial time PTM for L which is
always correct when it rejects an input but which will sometimes
incorrectly accept an input x ¢ L.

A language L is decidable in zero-error probabilistic polynomial time or
equivalently belongs to ZP® iff 1 a PTM, M, with polynomial expected
running time such that for any input x € X;:

@ ifxeLthen Pr[M accepts x] = 1;
@ ifx¢ L then Pr[M accepts x] = 0.

v
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RP, co-RP, ZPP, BPP

Proposition
ZPP = RPN co-RP.

Definition
A language L belongs to BPP? iff there is a PTM, M, with polynomial
running time such that on any input x € X;:

@ ifxe L then Pr[M accepts x] > 3/4;
@ ifx¢ L then Pr[M accepts x] < 1/4.

4Bounded-Error Probabilistic Polynomial-Time
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Complexity Classes Time Complexity

Complexity Class

EXPSPACE

PSPACE = NPSPACE = IP

DLERELGIDER(LGGIELNLESGUCYI#LIInE| Complexity Theory in Cryptography

December 23, 2022

45/48



R
P vs. NP & Cryptography

@ P+ NP & NP ¢ BPP are necessary for most of the modern
cryptography.
@ They are not sufficient for cryptography.

@ Worst-case complexity = the maximum number of steps taken on
any instance of size n.

@ Best-case complexity = the minimum number of steps taken on
any instance of size n.

@ Average-case complexity = the average number of steps taken on
any instance of size n.
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Complexity Zoo
http://qwiki.stanford.edu/index.php/Complexity_Zoo

T. Apostol,
Introduction to Analytic Number Theory, Narosa Publishing House, 1998.

N. Koblitz,
A Course in Number Theory and Cryptography, Springer, 1994.

A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,

Handbook of Applied Cryptography, CRC Press, 1996. Available online
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http://www.cacr.math.uwateroo.ca/hac/

J. Talbot & D. Welsh,

Complexity and Cryptography - An Introduction, Cambridge University
Press, 2006.
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http://qwiki.stanford.edu/index.php/Complexity_Zoo
http://www.cacr.math.uwateroo.ca/hac/

The End

Thanks a lot for your attention!
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