Complexity Theory in Cryptography

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

December 23, 2022

Outline

- Introduction
 - Time Estimation
- Notations
- Complexity Classes
 - Time Complexity

 Computational complexity theory is the study of the minimal resources needed to solve computational problems.

- Computational complexity theory is the study of the minimal resources needed to solve computational problems.
 - Two fundamental questions:
 - Is a problem P intrinsically "easy" or "difficult" to solve?

- Computational complexity theory is the study of the minimal resources needed to solve computational problems.
 - Two fundamental questions:
 - Is a problem P intrinsically "easy" or "difficult" to solve?
 - \bigcirc Given two problems, $\mathbf{P_1}$ and $\mathbf{P_2}$, which is easier to solve?

- Computational complexity theory is the study of the minimal resources needed to solve computational problems.
 - Two fundamental questions:
 - Is a problem P intrinsically "easy" or "difficult" to solve?
 - \bigcirc Given two problems, $\mathbf{P_1}$ and $\mathbf{P_2}$, which is easier to solve?
- Running time the number of basic (or primitive) operations (or steps) taken by an algorithm.

- Computational complexity theory is the study of the minimal resources needed to solve computational problems.
 - Two fundamental questions:
 - Is a problem P intrinsically "easy" or "difficult" to solve?
 - \bigcirc Given two problems, $\mathbf{P_1}$ and $\mathbf{P_2}$, which is easier to solve?
- Running time the number of basic (or primitive) operations (or steps) taken by an algorithm.
 - The running time of an algorithm usually depends on the size of the input.

- Computational complexity theory is the study of the minimal resources needed to solve computational problems.
 - Two fundamental questions:
 - Is a problem P intrinsically "easy" or "difficult" to solve?
 - \bigcirc Given two problems, $\mathbf{P_1}$ and $\mathbf{P_2}$, which is easier to solve?
- Running time the number of basic (or primitive) operations (or steps) taken by an algorithm.
 - The running time of an algorithm usually depends on the size of the input.
- Space complexity to measure the amount of temporary storage used when performing a computational task.

Numbers in different bases

Numbers in different bases
 Any number n between b^{k-1} and b^k is a k-digit number to the base b.

- Numbers in different bases
 Any number n between b^{k-1} and b^k is a k-digit number to the base b.
- Number of digits

- Numbers in different bases
 Any number n between b^{k-1} and b^k is a k-digit number to the base b.
- Number of digits

$$= [\log_b n] + 1.$$

- Numbers in different bases
 Any number n between b^{k-1} and b^k is a k-digit number to the base b.
- Number of digits

$$= [\log_b \ n] + 1.$$

Number of bits

- Numbers in different bases
 Any number n between b^{k-1} and b^k is a k-digit number to the base b.
- Number of digits

$$= [\log_b \ n] + 1.$$

Number of bits

$$= [\log_2 n] + 1 \approx [1.44 \times ln n] + 1.$$

Example

① If $\mathbf{A} = \begin{bmatrix} \mathbf{a_{ij}} \end{bmatrix}_{r \times s}$ is a matrix with r rows, s columns, where $\mathbf{a_{ij}} \in \mathbb{Z}_n$, then the size of \mathbf{A}

Example

• If $\mathbf{A} = \left[\mathbf{a_{ij}}\right]_{r \times s}$ is a matrix with r rows, s columns, where $\mathbf{a_{ij}} \in \mathbb{Z}_n$, then the size of \mathbf{A}

$$= rs(1 + [\log_2 n]) bits.$$

Example

• If $\mathbf{A} = \begin{bmatrix} \mathbf{a_{ij}} \end{bmatrix}_{r \times s}$ is a matrix with r rows, s columns, where $\mathbf{a_{ij}} \in \mathbb{Z}_n$, then the size of \mathbf{A}

$$= rs(1 + [\log_2 n]) bits.$$

② If f is a polynomial of degree d, each coefficient $\in \mathbb{Z}_n$, then the size of f

Example

• If $\mathbf{A} = \begin{bmatrix} \mathbf{a_{ij}} \end{bmatrix}_{r \times s}$ is a matrix with r rows, s columns, where $\mathbf{a_{ij}} \in \mathbb{Z}_n$, then the size of \mathbf{A}

$$= rs(1 + [\log_2 n]) bits.$$

② If f is a polynomial of degree d, each coefficient $\in \mathbb{Z}_n$, then the size of f

$$= (d+1)(1 + [\log_2 n])$$
 bits.

Outline

- Introduction
 - Time Estimation
- 2 Notations
- Complexity Classes
 - Time Complexity

Number of steps required to add 2 integers a & b

Number of steps required to add 2 integers a & b

```
Input: integers a \ge b \ge 0
Output: a + b
Algorithm:

while (b \ne 0){
a = a + + b = b - - 
}
output a
```

Number of steps required to add 2 integers a & b

```
Input: integers a \ge b \ge 0
Output: a + b
Algorithm:

while (b \ne 0){
a = a + + b = b - - 
}
output a
```

Number of operations

Number of steps required to add 2 integers a & b

```
Input: integers a \ge b \ge 0
Output: a + b
Algorithm:
   while (b \neq 0)
       a = a + +
       b = b - -
output a
```

Number of operations = 3b + 1

Number of bit operations required to add 2 k-bit integers n & m

Number of bit operations required to add 2 k-bit integers n & m

- Look at the top and bottom bit and also at whether there's a carry above the top bit.
- If both bits are 0 and there is no carry, then put down 0.
- If either both bits are 0 and there is a carry; or one of the bits is 0, the other is 1 and there is no carry, then put down 1.
- If either one of the bits is 0, the other is 1, and there is a carry; or both bits are 1 and there is no carry then put down 0, put a carry in the next column.
- If both bits are 1 and there is a carry, then put down 1, put a carry in the next column.

Number of bit operations required to add 2 k-bit integers n & m

- Look at the top and bottom bit and also at whether there's a carry above the top bit.
- If both bits are 0 and there is no carry, then put down 0.
- If either both bits are 0 and there is a carry; or one of the bits is 0, the other is 1 and there is no carry, then put down 1.
- If either one of the bits is 0, the other is 1, and there is a carry; or both bits are 1 and there is no carry then put down 0, put a carry in the next column.
- If both bits are 1 and there is a carry, then put down 1, put a carry in the next column.

Time(n + m) = k-bit operations.

Number of bit operations required to add 2 k-bit integers n & m

```
Input: n = n_k n_{k-1} \cdots n_2 n_1 & m = m_k m_{k-1} \cdots m_2 m_1

Output: n + m in binary.

Algorithm: c \leftarrow 0
for (i = 1 \text{ to } k){
    if sum(n_i, m_i, c) = 1 \text{ or } 3
        then d_i \leftarrow 1
    else d_i \leftarrow 0
    if sum(n_i, m_i, c) \ge 2
        then c \leftarrow 1
    else c \leftarrow 0}

if c = 1 then output 1d_k d_{k-1} \cdots d_2 d_1
else output d_k d_{k-1} \cdots d_2 d_1.
```

- Number of bit operations required to add 2 k-bit integers n & m
 - iv. If either
 - one of the bits is 0, the other is 1, and there is a carry, or
 - both bits are 1 and there is no carry,
 - then put down 0, put a carry in the next column.
 - v. If both bits are 1 and there is a carry, then put down 1, put a carry in the next column.

- Number of bit operations required to add 2 k-bit integers n & m
 - iv. If either
 - one of the bits is 0, the other is 1, and there is a carry, or
 - both bits are 1 and there is no carry,
 - then put down 0, put a carry in the next column.
 - v. If both bits are 1 and there is a carry, then put down 1, put a carry in the next column.

Time(n + m) = k-bit operations.

 Number of bit operations required to multiply a k-bit integer n by an ℓ-bit integer m

- Number of bit operations required to multiply a k-bit integer n by an ℓ-bit integer m
 - at most ℓ rows can be obtained

 - understand \bullet suppose there are $\ell' \leq \ell$ rows.
 - Multiplication task can be broken down into $\ell' 1$ additions
 - omoving down from the 2^{nd} row to the ℓ^{nh} row, adding each new row to the partial sum of all of the earlier rows
 - each addition takes at most k-bit operations
 - unit total number of bit operations is at most $\ell \times k$.

- Number of bit operations required to multiply a k-bit integer n by an ℓ-bit integer m
 - at most \(\ell\) rows can be obtained
 - \bullet each row consists of a copy of n shifted to the left a certain distance
 - **u** suppose there are $\ell' \leq \ell$ rows.
 - **1** multiplication task can be broken down into $\ell' 1$ additions
 - moving down from the 2^{nd} row to the ℓ^{rth} row, adding each new row to the partial sum of all of the earlier rows
 - each addition takes at most k-bit operations
 - unit total number of bit operations is at most $\ell \times k$.

Time $(n \times m) < k\ell$ -bit operations.

Number of bit operations required to multiply two *n*-bit integers
 x & y

- Number of bit operations required to multiply two *n*-bit integers
 x & y
- Let n = 2t. Then

$$x = 2^{t}x_{1} + x_{0} & y = 2^{t}y_{1} + y_{0}$$

- Number of bit operations required to multiply two *n*-bit integers
 x & y
- Let n = 2t. Then

$$x = 2^{t}x_{1} + x_{0} & y = 2^{t}y_{1} + y_{0}$$

•

$$x.y = u_2.2^{2t} + u_1.2^t + u_0$$

where $u_0 = x_0.y_0$, $u_2 = x_1.y_1 \& u_1 = (x_0 + x_1).(y_0 + y_1) - u_0 - u_2$.

Complexity of Integer Multiplication

Method	Year	# Operations
Karatsuba	1962	$\leq C.n^{\log_2 3}$
Ofman		
Toom	1963	$\leq C.n^{1+\epsilon}$
Schönhage	1971	$\leq C.(n \log n \log \log n \cdots 2^{\leq C_1 \log^* n})$
Strassen		$\leq C.(n\log n\log\log n)$
Fürer	2007	$\leq C.(n\log n \cdot 2^{\leq C_1\log^* n})$
Anindya De	2008	$\leq C.(n\log n \cdot 2^{\leq C_1\log^* n})$

Bit Operation for Doing Arithmetic

Example

An upper bound for the number of bit operations required to compute n!.

Bit Operation for Doing Arithmetic

Example

An upper bound for the number of bit operations required to compute n!.

- At the $(j-1)^{th}$ step $(j=2,3,\cdots,n-1)$, you are multiplying j! by j+1.
- n-2 steps requires to compute n!, where each step involves multiplying a partial product by the next integer.
- Product of n k-bit integers will have at most nk bits.
- At each step, we require multiplication of an integer with at most k bits by an integer with at most nk bits.
- The total number of bit operations is bounded by $(n-2)nk^2$.

Bit Operation for Doing Arithmetic

Example

An upper bound for the number of bit operations required to compute n!.

- At the $(j-1)^{th}$ step $(j=2,3,\cdots,n-1)$, you are multiplying j! by j+1.
- n-2 steps requires to compute n!, where each step involves multiplying a partial product by the next integer.
- Product of n k-bit integers will have at most nk bits.
- At each step, we require multiplication of an integer with at most k bits by an integer with at most nk bits.
- The total number of bit operations is bounded by $(n-2)nk^2$.

Time(to compute n!) $\leq n^2(\ln n)^2$.

Problem

Given a list of n cities, c_1, c_2, \dots, c_n and an $n \times n$ symmetric matrix \mathbf{D} of distances, such that

 D_{ij} = distance from city c_i to city c_j ,

determine an optimal shortest tour visiting each of the cities exactly once.

Problem

Given a list of n cities, c_1, c_2, \dots, c_n and an $n \times n$ symmetric matrix \mathbf{D} of distances, such that

 D_{ij} = distance from city c_i to city c_j ,

determine an optimal shortest tour visiting each of the cities exactly once.

Solution

Try all possible tours in turn and choose the shortest one.

Problem

Given a list of n cities, c_1, c_2, \dots, c_n and an $n \times n$ symmetric matrix \mathbf{D} of distances, such that

 D_{ij} = distance from city c_i to city c_j ,

determine an optimal shortest tour visiting each of the cities exactly once.

Solution

Try all possible tours in turn and choose the shortest one.

No. of possible tours

Problem

Given a list of n cities, c_1, c_2, \dots, c_n and an $n \times n$ symmetric matrix \mathbf{D} of distances, such that

 D_{ij} = distance from city c_i to city c_j ,

determine an optimal shortest tour visiting each of the cities exactly once.

Solution

Try all possible tours in turn and choose the shortest one.

No. of possible tours = n!.

Definition

Let $f, g : \mathbb{N} \to \mathbb{R}$, $g(x) > 0 \ \forall \ x \ge a$, where $a \in \mathbb{N}$. Then f = O(g) means that $\frac{f(x)}{g(x)}$ is bounded $\forall \ x \ge a$, i.e., \exists a constant M > 0 such that

$$|f(x)| \le M.g(x) \quad \forall \ x \ge a.$$

Definition

Let $f, g: \mathbb{N} \to \mathbb{R}$, $g(x) > 0 \ \forall \ x \ge a$, where $a \in \mathbb{N}$. Then f = O(g) means that $\frac{f(x)}{g(x)}$ is bounded $\forall \ x \ge a$, i.e., \exists a constant M > 0 such that

$$|f(x)| \le M.g(x) \quad \forall \ x \ge a.$$

Let
$$f(n) = 2.n^3 + 3.n^2 + 4.n + 5 & g(n) = n^3$$
.

Definition

Let $f, g: \mathbb{N} \to \mathbb{R}$, $g(x) > 0 \ \forall \ x \ge a$, where $a \in \mathbb{N}$. Then f = O(g) means that $\frac{f(x)}{g(x)}$ is bounded $\forall \ x \ge a$, i.e., \exists a constant M > 0 such that

$$|f(x)| \le M.g(x) \quad \forall \ x \ge a.$$

Example

Let
$$f(n) = 2.n^3 + 3.n^2 + 4.n + 5 & g(n) = n^3$$
.

Then
$$f = O(g)$$
, for take $a = 5$, $M = 3$.

The notation Big *O* represents an upper bound of the computational complexity of an algorithm in the worst-case scenario.

• g is simpler function than f and it does not increase much faster than f.

 g is simpler function than f and it does not increase much faster than f.

 g is simpler function than f and it does not increase much faster than f.

$$n^2 = O(e^{n^2})$$

$$e^{-n} = O(n^2)$$

 g is simpler function than f and it does not increase much faster than f.

$$n^2 = O(e^{n^2})$$

$$e^{-n} = O(n^2)$$

5
$$ln \ n = O(n^{\delta}) \ for \ any \ \delta \in \mathbb{R}^+$$

Complexity of Arithmetic Operations

- 2 Time(k-bit k-bit) = O(k)
- 3 Time(k-bit $\times k$ -bit) = $O(k^2)$
- **5** Time $(n!) = O(n^2(\ln n)^2)$

Complexity of Integer Multiplication

Year	# Operations
1962	$O(n^{\log_2 3})$
1963	$O(n^{1+\epsilon})$
1971	$O((n\log n\log\log n\cdots 2^{O(\log^* n)}))$
	$O((n \log n \log \log n))$
2007	$O((n\log n \cdot 2^{O(\log^* n)}))$
2008	$O((n\log n \cdot 2^{O(\log^* n)})$
	1962 1963 1971 2007

Euclidean Algorithm

```
Input: (a, b)  [a \ge b]
Output: gcd(a, b)
r_0 \leftarrow a;
r_1 \leftarrow b;
m \leftarrow 1;
while \{r_m \ne 0\} \{q_m \leftarrow \lfloor \frac{r_{m-1}}{r_m} \rfloor;
r_{m+1} \leftarrow r_{m-1} - q_m \cdot r_m;
m \leftarrow m - 1;
```

Euclidean Algorithm

```
m \leftarrow m-1;
return q_1, \ldots, q_m; r_m
\mathbf{r_m} = \mathbf{gcd}(\mathbf{a}, \mathbf{b})
```

Euclidean Algorithm

```
m \leftarrow m-1;
return q_1, \ldots, q_m; r_m
\mathbf{r_m} = \mathbf{gcd}(\mathbf{a}, \mathbf{b})
```

Time to compute $gcd(a, b) = O((\ln a)^2)$.

Extended Euclidean Algorithm

Proposition

Let d = gcd(a, b), where a > b.

Then $\exists u \& v \in \mathbb{Z} : d = u.a + b.v.$

⇒ gcd of 2 numbers can be expressed as a linear combination of the numbers with integer coefficients.

Extended Euclidean Algorithm

Proposition

Let d = gcd(a, b), where a > b.

Then $\exists u \& v \in \mathbb{Z} : d = u.a + b.v.$

⇒ gcd of 2 numbers can be expressed as a linear combination of the numbers with integer coefficients.

Time to compute
$$u \& v = O((\ln a)^2)$$
.

Complexity in \mathbb{Z}_n

Let $m_1 \& m_2 \in \mathbb{Z}_n$ and size(n) = k-bit.

Result

- $2 Time(m_1 m_2) mod n = O(k)$

Complexity in \mathbb{Z}_n

Let $m_1 \& m_2 \in \mathbb{Z}_n$ and size(n) = k-bit.

Result

- $2 Time(m_1 m_2) mod n = O(k)$
- **4** $Time(m_1)^{-1} \mod n = O(k^2)$

Complexity in \mathbb{Z}_n

Let $m_1 \& m_2 \in \mathbb{Z}_n$ and size(n) = k-bit.

Result

- $2 Time(m_1 m_2) mod n = O(k)$
- **4** $Time(m_1)^{-1} \mod n = O(k^2)$

Small-o

Definition

Let f and g be 2 +ve real valued functions such that

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}\to 0.$$

Then we say that f = o(g), $\Rightarrow f(n) \ll g(n)$ when n is large.

- A function f is **negligible** if f = o(1/g) for any polynomial $g(n) = n^c$
- The notation $g = \Omega(f)$ means exactly the same thing as f = O(g).
- If f = O(g) and $f = \Omega(g)$ then we use the notation $f = \Theta(g) \Rightarrow C_1.g(n) \leq f(n) \leq C_2.g(n)$ for $n \geq n_0, C_i \in \mathbb{R}^+$.

From Polynomial to Exponential Time

Definition

- **Polynomial time algorithm:** computational complexity is $O(n^k)$, where n is the size of the input in bits and $k \in \mathbb{R}^+$.
- **Exponential time algorithm:** computational complexity is of the form $O(c^{f(n)})$ where c > 1 is a constant and f is a polynomial function on the size of the input $n \in \mathbb{N}$.
- **Subexponential time algorithm:** computational complexity for input $q \in \mathbb{N}^a$ is

$$L_q(\alpha, c) = O(e^{(c+o(1))(\ln q)^{\alpha}(\ln \ln q)^{1-\alpha}}),$$

where $\alpha \in \mathbb{R}$, $0 < \alpha < 1$ and c is a positive constant.

^aNote that *q* is the input to the algorithm and not the size of the input.

Decision Problem

Decision Problem

Example

1 Input: $N \in \mathbb{Z}^+$

Question: Is *N* a prime number?

Decision Problem

Example

1 Input: $N \in \mathbb{Z}^+$

Question: Is N a prime number?

2 Input: $N, k \in \mathbb{Z}^+$

Question: Does *N* have a factor *M*, where $2 \le M \le k$?

Outline

- Introduction
 - Time Estimation
- 2 Notations
- Complexity Classes
 - Time Complexity

\mathcal{L} and \mathcal{NL} -Space

∠ Logarithmic Space

 The class of decision problems solvable by a Turing machine restricted to use an amount of memory logarithmic in the size of the input, n.

NL-Nondeterministic Logarithmic-Space

- Has the same relation to \mathcal{L} as \mathcal{NP} does to \mathcal{P} .
- $\mathcal{NL} = co-\mathcal{NL}$.

$\mathcal{P}, \mathcal{NP}, \mathcal{NPC} \mathcal{NP}$ -hard

Definition

A decision problem $P \in \mathcal{P}$ of polynomial time problems if \exists a polynomial p and an algorithm such that if for an instance of P with input size $\leq n$, the algorithm answer the question correctly in time $\leq p(n)$.

Example

Instance: $n \in \mathbb{Z}^+$

Question: Is *n* prime?

$\mathcal{P}, \mathcal{NP}, \mathcal{NPC} \mathcal{NP}$ -hard

Definition

A decision problem $P \in \mathcal{P}$ of polynomial time problems if \exists a polynomial p and an algorithm such that if for an instance of P with input size $\leq n$, the algorithm answer the question correctly in time $\leq p(n)$.

Example

Instance: $n \in \mathbb{Z}^+$

Question: Is *n* prime?

Answer: Yes, $O((\log n)^6)$ using AKS algo

\mathcal{P} , \mathcal{NP} , \mathcal{NPC} \mathcal{NP} -hard

Definition

A decision problem $P \in \mathcal{NP}$ if for given any instance of P with some extra information, the YES answer can be verified in polynomial time.

Definition

A decision problem $P \in \mathbf{co} \cdot \mathcal{NP}$ if for given any instance of P with some extra information, the NO answer can be verified in polynomial time.

Example

Instance: $n \in \mathbb{Z}^+$

Question: Is n composite?

Definition

A decision problem $P \in \mathcal{NP}$ is said to be \mathcal{NP} -complete if every other problem $Q \in \mathcal{NP}$ can be reduced to P in polynomial time, i.e., $Q \leq_P P$.

Definition

Let Π and Γ be 2 decision problems. We say that $\Pi \leq_P \Gamma$, if Π can be solved in polynomial time given access to an oracle that solves Γ .

Informally, if $\Pi \leq_P \Gamma \Rightarrow \Pi$ is not harder than Γ .

Example

Input: A quadratic polynomial $p \in \mathbb{Z}[x]$ Question: Does p(x) have 2 distinct real roots?

Input: $N \in \mathbb{Z}$ Question: Is $N \in \mathbb{Z}^+$

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

Input: A quadratic polynomial $p \in \mathbb{Z}[x]$ Question: Does p(x) have 2 distinct real roots?

Question: Is $N \in \mathbb{Z}^+$

Example

 $PRIMALITY \leq_P FACTORING$

Definition

A decision or search problem P is NP-hard if \exists some NP-complete problem Q that poly-time reduces to P, i.e., $Q \leq_P P$

Example

Input: A finite cyclic group G of order n, a generator α of G and an element $\beta \in G$.

Question: Find the integer x, $0 \le x \le n-1$, such that $\alpha^x = \beta$.

Example

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 1$ for $1 \le i \le k$.

Example

- Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 1$ for $1 \le i \le k$.
- **Discrete Logarithm Problem:** Given an abelian group (G, .) and $g \in G$ of order n. Given $h \in G$ such that $h = g^x$ find $x (DLP(g,h) \to x)$.

Example

- Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 1$ for $1 \le i \le k$.
- **Discrete Logarithm Problem:** Given an abelian group (G, .) and $g \in G$ of order n. Given $h \in G$ such that $h = g^x$ find $x (DLP(g,h) \to x)$.
- Computational Diffie-Hellman Problem: Given $a = g^x$ and $b = g^y$ find $c = g^{xy}$. $(CDH(g, a, b) \rightarrow c)$.

Example

• Elliptic Curve Discrete Logarithm Problem (ECDLP): \mathbb{E} denotes the collections of points on a elliptic curve and $P \in \mathbb{E}$. Let S be the cyclic subgroup of \mathbb{E} generated by P. Given $Q \in S$, find an integer x such that Q = x.P.

Example

• Elliptic Curve Discrete Logarithm Problem (ECDLP): \mathbb{E} denotes the collections of points on a elliptic curve and $P \in \mathbb{E}$. Let S be the cyclic subgroup of \mathbb{E} generated by P. Given $Q \in S$, find an integer x such that Q = x.P.

• Subset Sum Problem (SSP): $\{a_1, a_2, \dots, a_n\} \subset \mathbb{Z}^+$ called a knapsack set, $s \in \mathbb{Z}^+$, determine whether or not $x_i \in \{0, 1\}$, for 1 < i < n such that

$$\sum_{i=1}^{n} x_i.a_i = s.$$

NP-complete Problem

Example

• Hilbert's Nullstellensatz (HN): Given $p_1, p_2, ..., p_m \in \mathbb{K}[x_1, x_2, ..., x_n]$, where \mathbb{K} is a finite field. Does there exists $(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n$ such that:

$$p_1(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0, \cdots, p_m(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0.$$

NP-complete Problem

Example

• Hilbert's Nullstellensatz (HN): Given $p_1, p_2, ..., p_m \in \mathbb{K}[x_1, x_2, ..., x_n]$, where \mathbb{K} is a finite field. Does there exists $(\alpha_1, \alpha_2, ..., \alpha_n) \in \mathbb{K}^n$ such that:

$$p_1(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0, \cdots, p_m(\alpha_1, \alpha_2, \ldots, \alpha_n) = 0.$$

It remains NP-complete with input polynomials of total degree 2.

RP, co-RP, ZPP, BPP

A language L belongs to RP iff \exists a PTM, M, with polynomial running time such that on any input $x \in \Sigma_0^n$:

- if $x \in L$ then $Pr[M \ accepts \ x] \ge 1/2$;
- if $x \notin L$ then $Pr[M \ accepts \ x] = 0$.

RP, co-RP, ZPP, BPP

A language *L* belongs to *RP* iff \exists a PTM, *M*, with polynomial running time such that on any input $x \in \Sigma_0^n$:

- if $x \in L$ then $Pr[M \ accepts \ x] \ge 1/2$;
- if $x \notin L$ then $Pr[M \ accepts \ x] = 0$.

Theorem

 $P \subseteq RP \subseteq NP$.

Input: $n \in \mathbb{Z}^+$.

Question: is n composite?

Theorem

COMPOSITE ∈ RP.

The Miller-Rabin Primality Test

```
Input: an odd integer n \ge 3.

Algorithm: choose a \in_R \mathbb{Z}_n^+ if gcd(a,n) \ne 1 output 'composite' let n-1=2^k.m, with m odd if a^m \equiv 1 \mod n output 'prime' for i=0 to k-1 if a^{m.2^i} \equiv -1 \mod n then output 'prime' next i output 'composite'.
```

The Miller-Rabin Primality Test

Theorem

The Miller-Rabin primality test is a probabilistic polynomial time algorithm. Given input n

- if n is prime then the algorithm always outputs 'prime';
- \bigcirc if n is composite then

 $Pr[the \ algorithm \ outputs \ `composite'] \ge \frac{1}{2}.$

The Miller-Rabin Primality Test

Theorem

The Miller-Rabin primality test is a probabilistic polynomial time algorithm. Given input n

- if n is prime then the algorithm always outputs 'prime';
- \bigcirc if n is composite then

$$Pr[the \ algorithm \ outputs \ `composite'] \ge \frac{1}{2}.$$

Hence

COMPOSITE ∈ *RP* or equivalently *PRIME* ∈ co-RP.

- If $L \in RP$ then \exists a polynomial time PTM for L which is always correct when it accepts an input but which will sometimes incorrectly reject an input $x \in L$.
- ||Iy if L ∈ co-RP then ∃ a polynomial time PTM for L which is always correct when it rejects an input but which will sometimes incorrectly accept an input x ∉ L.

- If L∈ RP then ∃ a polynomial time PTM for L which is always correct when it accepts an input but which will sometimes incorrectly reject an input x ∈ L.
- ||Iy if L ∈ co-RP then ∃ a polynomial time PTM for L which is always correct when it rejects an input but which will sometimes incorrectly accept an input x ∉ L.

Definition

A language L is decidable in **zero-error probabilistic polynomial time** or equivalently belongs to \mathbb{ZPP} iff \exists a PTM, M, with polynomial expected running time such that for any input $x \in \Sigma_0^*$:

- if $x \in L$ then $Pr[M \ accepts \ x] = 1$;
- if $x \notin L$ then $Pr[M \ accepts \ x] = 0$.

Proposition

 $\mathbb{ZPP} = RP \cap co \cdot RP$.

Definition

A language L belongs to BPP^a iff there is a PTM, M, with polynomial running time such that on any input $x \in \Sigma_0^*$:

- ① if $x \in L$ then $Pr[M \ accepts \ x] \ge 3/4$;
- $\textcircled{\textbf{0}}$ if $x \notin L$ then $Pr[M \ accepts \ x] \leq 1/4$.

^aBounded-Error Probabilistic Polynomial-Time

Complexity Class

\mathcal{P} vs. \mathcal{NP} & Cryptography

- P ≠ NP & NP ⊈ BPP are necessary for most of the modern cryptography.
- They are not sufficient for cryptography.
- Worst-case complexity ⇒ the maximum number of steps taken on any instance of size n.
- Best-case complexity ⇒ the minimum number of steps taken on any instance of size n.
- Average-case complexity ⇒ the average number of steps taken on any instance of size n.

- Complexity Zoo
 - http://qwiki.stanford.edu/index.php/Complexity_Zoo
- T. Apostol, Introduction to Analytic Number Theory, Narosa Publishing House, 1998.
- N. Koblitz, A Course in Number Theory and Cryptography, Springer, 1994.
- A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996. Available online at
 - http://www.cacr.math.uwateroo.ca/hac/
- J. Talbot & D. Welsh, Complexity and Cryptography - An Introduction, Cambridge University Press. 2006.

The End

Thanks a lot for your attention!