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Disclaimers

1
All the pictures used in this presentation are taken from freely available
websites.

2
If there is a reference on a slide all of the information on that slide is
attributable to that source whether quotation marks are used or not.
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Introduction

Approaches to Evaluating the Security of a
Cryptosystem

Computational security: concerns the computational effort
required to break a cryptosystem. A system to be
computationally secure if the best algorithm for breaking it
requires at least N operations, where N very large number

N = 2112.

Provable security: is to provide evidence of security by means of
a reduction. This approach only provides a proof of security
relative to some other problem, not an absolute proof of security.

Unconditional security: it cannot be broken, even with infinite
computational resources.
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Introduction

Type of Attack on a Cryptosystem

The attack model specifies the information available to the adversary
when (s)he mounts an attack.

Ciphertext-only Attack/Known Ciphertext Attack (KCA): The
opponent possesses a string of ciphertext y.

Known Plaintext Attack (KPA): The opponent possesses a
string of plaintext, x, and the corresponding ciphertext, y.

Chosen Plaintext Attack (CPA or CPA1): The opponent can
choose a plaintext string, x, and receives the corresponding
ciphertext string, y.

Chosen Ciphertext Attack (CCA or CCA1): The opponent can
choose a ciphertext string, y, and receives the corresponding
plaintext string, x.
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Introduction

Type of Attack on a Cryptosystem

Adaptive Chosen Plaintext Attack (ACPA or CPA2): is a
chosen plaintext attack in which the choice of plaintext may
depend on the ciphertext received from previous requests.

Adaptive Chosen Ciphertext Attack (ACCA or CCA2): is a
chosen ciphertext attack where the choice of ciphertext may
depend on the plaintext received from previous requests.
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Perfect Secrecy

Perfect Secrecy

Assumption: The key K is chosen using some fixed probability
distribution

(often a key is chosen at random)

The key is chosen before the sender knows what the plaintext P
will be. Hence, we can assume that the key and the plaintext are
independent random variables.

The two probability distributions on P and K induce a probability
distribution on C.

C(K) denotes the set of possible ciphertexts if K is the key. Then,
for every y ∈ C, we have that

Pr[y = y] =
∑

{K:y∈C(K)}

Pr[K = K]Pr[x = dK(y)].
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Perfect Secrecy

Perfect Secrecy

The conditional probability

Pr[y = y|x = x] =
∑

{K:x=dK (y)}

Pr[K = K].

The probability that x is the plaintext, given that y is the ciphertext

Pr[x = x|y = y] =
Pr[x = x] × Pr[y = y|x = x]

Pr[y = y]
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Perfect Secrecy

Example

Example
Let P = {a, b} with

Pr[a] = 1/4, Pr[b] = 3/4.

Let K = {K1,K2,K3} with

Pr[K1] = 1/2, Pr[K2] = Pr[K3] = 1/4.

Let C = {1, 2, 3, 4}, and suppose the encryption functions are
defined to be
eK1 (a) = 1, eK1 (b) = 2; eK2 (a) = 2, eK2 (b) = 3; eK3 (a) = 3, eK3 (b) = 4.
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Perfect Secrecy

Example

Example
This cryptosystem can be represented by the following encryption
matrix:

a b
K1 1 2
K2 2 3
K3 3 4

Compute the probability distribution on C:

Pr[1] = Pr[K1].Pr[a]

= 1
2 ×

1
4 =

1
8

Pr[2] = Pr[K1].Pr[b] + Pr[K2].Pr[a] = 1
2 ×

3
4 +

1
4 ×

1
4 =

7
16

Pr[3] = Pr[K2].Pr[b] + Pr[K3].Pr[a] = 1
4 ×

3
4 +

1
4 ×

1
4 =

1
4

Pr[4] = Pr[K3].Pr[b] = 1
4 ×

3
4 =

3
16
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Perfect Secrecy

Example

Example
Now, compute the conditional probability distributions on the
plaintext

Pr[a|1] =

Pr[a].Pr[K1]
Pr[1] = 1

Pr[a|2] = 1
7

Pr[a|3] = 1
4

Pr[a|4] = 0a

Pr[b|1] = 0b

Pr[b|2] = 6
7

Pr[b|3] = 3
4

Pr[b|4] = 1

aThere does not exist any key for which a is mapped to 4
bThere does not exist any key for which b is mapped to 1
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Perfect Secrecy

Perfect Secrecy

Definition
A cryptosystem has perfect secrecy if

Pr[x|y] = Pr[x] ∀x ∈ P, y ∈ C.

Theorem
Suppose (P,C,K ,E,D) is a cryptosystem where |K| = |C| = |P|. Then
the cryptosystem provides perfect secrecy iff every key is used with
equal probability 1

|K|
, and for every x ∈ P and every y ∈ C,

∃ ! K : eK(x) = y.
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Perfect Secrecy

One-time Pad

Definition
Let P = C = K = (Z2)n for n ≥ 1. For K ∈ (Z2)n , define eK(x)

eK(x) = (x1 + K1, . . . , xn + Kn) mod 2,

where x = (x1, . . . , xn) and K = (K1, . . . ,Kn).

Decryption is identical to encryption. If y = (y1, . . . , yn), then

dK(y) = (y1 + K1, . . . , yn + Kn) mod 2.
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Information Theory
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Information Theory

Uncertainly and Information

Tomorrow, the sun will rise from the East

The phone will ring before the class is over.

It will snow in Lucknow by the end of January 2023

Note: a high probability event conveys less information than a low
probability event.

Definition
The self information of the event X = xi for 1 ≤ i ≤ n is defined as

I(xi) = log
(

1
P(xi)

)
= − log(P(xi))
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Information Theory

Entropy

Entropy can be thought of as a mathematical measure of
information or uncertainty, and is computed as a function of a
probability distribution.

Definition
Suppose X is a discrete random variable. Then, the entropy or average
self information of the random variable X is defined as

H(X) = −
∑
x∈X

Pr[x] log2 Pr[x].
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Information Theory

Properties of Entropy

Theorem
Suppose X is a random variable having a probability distribution that
takes on the values p1, p2, . . . , pn,where pi > 0, 1 ≤ i ≤ n. Then
H(X) ≤ log2 n,

with equality iff pi = 1/n, 1 ≤ i ≤ n.

Theorem
H(X,Y) ≤ H(X) + H(Y), with equality if and only if X and Y are
independent random variables.
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Information Theory

Conditional Entropy

Definition
The conditional entropy H(X|Y) is defined by the weighted average
over all possible values y. It is computed as

H(X|Y) =
∑

y Pr[y].H(X|y)
= −

∑
y
∑

x Pr[y]Pr[x|y] log2 Pr[x|y].

Theorem

H(X,Y) = H(Y) + H(X|Y).

Corollary
H(X|Y) ≤ H(X), with equality iff X and Y are independent.
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Information Theory

Spurious Keys

Theorem
Let (P,C,K ,E,D) be a cryptosystem. Then

H(K|C) = H(K) + H(P) − H(C).

Definition
Attacker to guess the key from the ciphertext shall guess the key
and decrypt the cipher.
He checks whether the plaintext obtained is ‘meaningful’ English.
If not, he rules out the key.
But due to the redundancy of language more than one key will
pass this test.
Those keys, apart from the correct key, are called spurious.
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Information Theory

Entropy of Plain Text

HL: measure of the amount of information per letter of
‘meaningful ’ strings of plaintext.
A random string of plaintext formed using English letter has an
entropy of log2(26) ≈ 4.76 bits
A first order entropy of the English text is H(P) ≈ 4.14 bits

A second order entropy of the English text is H(P2)
2 ≈ 3.56 bits

The entropy of a natural language L denoted by HL and is defined
by

HL = lim
n→∞

H(Pn)
n
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Information Theory

Redundancy

Definition
The redundancy of L is defined as

RL = 1 −
HL

log2 |P|

For English Language, 1 ≤ HL ≤ 1.5. Let’s take HL = 1.25

|P| = 26

RL = 0.75

English Language is 75% redundant
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Information Theory

Unicity Distance

Definition
The unicity distance of a cryptosystem is defined to be the value of n,
denoted by n0, at which the expected number of spurious keys
becomes zero i.e., the average amount of ciphertext required for an
opponent to be able to uniquely compute the key, given enough
computing time.
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Information Theory
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Information Theory

The End

Thanks a lot for your attention!
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