Mathematics for Cryptography

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

January 20, 2021

Disclaimers

All the pictures used in this presentation are taken from freely available websites.

Disclaimers

All the pictures used in this presentation are taken from freely available websites.

2

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

Outline

(1) Maths for Symmetric/Private Key Crypto

- Algebra
- Rings
- Finite Fields

2) Maths for Asymmetric/Public Key Crypto

- Number Theory
- Primality Testing

Outline

(1) Maths for Symmetric/Private Key Crypto

- Algebra
- Rings
- Finite Fields
(2) Maths for Asymmetric/Public Key Crypto
- Number Theory
- Primality Testing

Group

Definition

(1) Let G be a non-empty set with a binary operation \circ defined on it. Then (G, \circ) is said to be a groupoid if \circ is closed i.e. if \circ : $G \times G \longrightarrow G$.
(1.) A set G with an operation \circ is said to be a semigroup if G is a groupoid and \circ is associative.
(1. A set G with an operation \circ is said to be a monoid if G is a semigroup and \exists an element $e \in G_{m}$ s/t g.e $=e . g=g \forall g \in G$.
(1) For each $x \in G, \exists$ an element $y \in G s / t y \circ x=x \circ y=e$. Usually, y is denoted by x^{-1}.

If G satisfies all the above, it is said to be a Group.
If $x \circ y=y \circ x \forall x, y \in G, G$ is called abelian or commutative group.

```
Example
(1) \((\mathbb{Z},+)\)
(2) \((\mathbb{Q},+),(\mathbb{Q}, \cdot)\)
(3) \((\mathbb{R},+),(\mathbb{C},+),(\mathbb{R}, \cdot),(\mathbb{C}, \cdot)\)
(4) \(\left(\mathbb{Z}_{n},+\right)\)
(5) \(\left(\mathbb{Z}_{p}, \cdot\right)\)
```


Group

- A group G is finite if $|G|$ or \# G is finite. The number of elements in a finite group is called its order.
- A non-empty subset H of a group G is a subgroup of G if H is itself a group w.r.t. the operation of G. If H is a subgroup of G and $H \neq G$, then H is called a proper subgroup of G.
- A group G is cyclic if $\exists \alpha \in G \mathrm{~s} / \mathrm{t}$ for each $\beta \in G \exists$ integer i with $\beta=\alpha^{i}$. Such an element α is called a generator of G.
- Let $\alpha \in G$. The order of α is defined to be the least positive integer $t \mathrm{~s} / \mathrm{t} \alpha^{t}=e$, provided that such an integer exists. If such a t does not exist, then the order of α is defined to be ∞.

Group

Theorem

Lagrange's Theorem: If G is a finite group \& H is a subgroup of G, then \#H|\#G. Hence, if $a \in G$, the order of a divides \#G.

- Every subgroup of a cyclic group is also cyclic. In fact, if G is a cyclic group of order n, then for each positive divisor d of n, G contains exactly one subgroup of order d.
- Let G be a group.
- If the order of $a \in G$ is t, then the order of a^{k} is $\frac{t}{\operatorname{gcd}(t, k)}$.
- If G is a cyclic group of order $n \& d \mid n$, then G has exactly $\phi(d)$ elements of order d. In particular, G has $\phi(n)$ generators.

Group

Example

(1) Consider the multiplicative group $\mathbb{Z}_{19}^{*}=\{1,2, \cdots, 18\}$ of order 18.

Subgroup	Generators	Order
$(\{1\}, \cdot)$	1	1
$(\{1,18\}, \cdot)$	18	2
$(\{1,7,11\}, \cdot)$	7,11	3
$(\{1,7,8,11,12,18\}, \cdot)$	8,12	6
$(\{1,4,5,6,7,9,11,16,17\}, \cdot)$	$4,5,6,9,16,17$	9
$\left(\mathbb{Z}_{19}^{*}, \cdot\right)$	$2,3,10,13,14,15$	18

(2) Consider the multiplicative group $\left(\mathbb{Z}_{26}^{*}, \cdot\right)$

Definition

A ring $(R,+, \times)$ consists of a set R with 2 binary operations arbitrarily denoted by ' + ' \& ' x ' on R, satisfying the following conditions:
(1.) $(R,+)$ is an abelian group with identity denoted ' 0 '.
(1. The operation \times is associative, i.e., $a \times(b \times c)=(a \times b) \times c \forall a, b, c \in R$.
(1.) The operation \times is distributive over + , i.e.,

- $a \times(b+c)=(a \times b)+(a \times c) \&$
- $(b+c) \times a=(b \times a)+(c \times a) \forall a, b, c \in R$.

Definition

A ring $(R,+, \times)$ consists of a set R with 2 binary operations arbitrarily denoted by ' + ' \& ' x ' on R, satisfying the following conditions:
(1) $(R,+)$ is an abelian group with identity denoted ' 0 '.
(1. The operation \times is associative, i.e., $a \times(b \times c)=(a \times b) \times c \forall a, b, c \in R$.
(1. The operation \times is distributive over + , i.e.,

- $a \times(b+c)=(a \times b)+(a \times c) \&$
- $(b+c) \times a=(b \times a)+(c \times a) \forall a, b, c \in R$.
- The ring R is said to be commutative ring if $a \times b=b \times a \forall a, b \in R$.
- The ring R is said to be ring with identity element if $\exists 1 \mathrm{~s} / \mathrm{t}$ $a .1=1 . a=a \forall a \in R$.

Example

(1) $(2 \mathbb{Z},+, \cdot)$
(1.) $(\mathbb{Z},+, \cdot)$
(1. $(\mathbb{R},+, \cdot)$
(v.) $\left(\mathbb{Z}_{26},+, \cdot\right)$
(.) For a given value of n, the set of all $n \times n$ square matrices over \mathbb{R} under the operations of matrix addition and matrix multiplication constitutes a ring.

- If R is a commutative ring, then $a(\neq 0) \in R$ is said to be a zero-divisor it \exists a $b \in R \& b \neq 0 \mathrm{~s} / \mathrm{t} a b=0$.

$$
R=\mathbb{Z}_{26} ; \quad 2 \& 13 \text { are zero-divisors }
$$

- A commutative ring R is said to be an integral domain if it has no zero-divisors.

$$
R=\mathbb{Z} \text { or } \mathbb{R}
$$

- A ring R is said to be a division ring if ($R \backslash\{0\}, \cdot$) forms a group.

$$
R=\mathbb{Z}_{p}
$$

- A non-empty subset I of R is said to be a (2-sided) ideal of R if
(1) $(I,+) \leq(R,+)$
(1.) $\forall u \in I \& r \in R$, both $u r$ \& $r u \in I$
- An ideal $M(\neq R)$ in a ring R is said to be maximal ideal of R if whenever I is an ideal of $R \mathrm{~s} / \mathrm{t} M \subseteq I \subseteq R$ then either $R=I$ or $M=I$.
- An integral domain R with identity is a principal ideal ring if every ideal I in R is of the form $I=\langle\alpha>, \quad \alpha \in R$.

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher is a simple substitution where

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& p_{i} \mapsto\left(a . p_{i}+b\right) \bmod 26 .
\end{aligned}
$$

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher is a simple substitution where

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& p_{i} \mapsto\left(a . p_{i}+b\right) \bmod 26 .
\end{aligned}
$$

Example

- Encrypt COLLEGE using $a=5$ and $b=4$

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher is a simple substitution where

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& p_{i} \mapsto\left(a . p_{i}+b\right) \bmod 26 .
\end{aligned}
$$

Example

- Encrypt COLLEGE using $a=5$ and $b=4$
- Convert C O L L E G E in numeric form

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher is a simple substitution where

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& p_{i} \mapsto\left(a . p_{i}+b\right) \bmod 26 .
\end{aligned}
$$

Example

- Encrypt COLLEGE using $a=5$ and $b=4$
- Convert C O L L E G E in numeric form

2141111464

- Apply the affine function

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher is a simple substitution where

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& p_{i} \mapsto\left(a . p_{i}+b\right) \bmod 26 .
\end{aligned}
$$

Example

- Encrypt COLLEGE using $a=5$ and $b=4$
- Convert C O L L E G E in numeric form

2141111464

- Apply the affine function 14227724824
- Cipher text is

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher is a simple substitution where

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& p_{i} \mapsto\left(a . p_{i}+b\right) \bmod 26 .
\end{aligned}
$$

Example

- Encrypt COLLEGE using $a=5$ and $b=4$
- Convert C O L L E G E in numeric form

2141111464

- Apply the affine function 14227724824
- Cipher text is OWHHYIY

Ring $\left(\mathbb{Z}_{26},+, \cdot\right)$ in Affine Cipher

- An affine cipher is a simple substitution where

$$
\begin{aligned}
& f_{a, b}: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26} \\
& x \mapsto(a . x+b) \bmod 26 .
\end{aligned}
$$

Exercise

(1) Let $f_{(a, b)} \& f_{(c, d)}$ be two affine ciphers s / t

$$
\begin{array}{ll}
f_{(a, b)}(x) \equiv(a \cdot x+b) & \bmod 26 \\
f_{(c, d)}(x) \equiv(c \cdot x+d) & \bmod 26
\end{array}
$$

Is $f_{(c, d)} \circ f_{(a, b)}$ a stronger encryption scheme than $f_{(a, b)}$?
(2) What is the key-space of an affine cipher?

Ring $M_{n}\left(\mathbb{Z}_{26}\right)$ in Hill Cipher - Poly-alphabetic Cipher

Hill Cipher ${ }^{1}$

- Encryption key,

$$
K=\left(\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right)
$$

${ }^{1}$ Hill cipher was developed by Lester S. Hill, an American mathematician.

Ring $M_{n}\left(\mathbb{Z}_{26}\right)$ in Hill Cipher - Poly-alphabetic Cipher

Hill Cipher ${ }^{1}$

- Encryption key,

$$
K=\left(\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right)
$$

- The plaintext letters $p_{1}, p_{2} \& p_{3}$ encrypted into ciphertext letters $c_{1}, c_{2} \& c_{3}$ by

$$
\left(\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right)=\left(\begin{array}{lll}
k_{11} & k_{12} & k_{13} \\
k_{21} & k_{22} & k_{23} \\
k_{31} & k_{32} & k_{33}
\end{array}\right)\left(\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right)
$$

${ }^{1}$ Hill cipher was developed by Lester S. Hill, an American mathematician.

Ring $M_{n}\left(\mathbb{Z}_{26}\right)$ in Hill Cipher - Poly-alphabetic Cipher

Example

$$
\text { Key }=\left(\begin{array}{ccc}
10 & 1 & 14 \\
11 & 9 & 4 \\
5 & 22 & 9
\end{array}\right)
$$

Ring $M_{n}\left(\mathbb{Z}_{26}\right)$ in Hill Cipher - Poly-alphabetic Cipher

Example

$$
\text { Key }=\left(\begin{array}{ccc}
10 & 1 & 14 \\
11 & 9 & 4 \\
5 & 22 & 9
\end{array}\right)
$$

- Encrypt the plaintext ETE RNA LLI GHT
- The numerical form of the plaintext is 419417130111186719
- The ciphertext is 1123611871165212317

LXG BSH BQF VXR

Finite Fields

- A finite field is a field \mathbb{F} which contains a finite number of elements.

Finite Fields

- A finite field is a field \mathbb{F} which contains a finite number of elements.
- If \mathbb{F} is a finite field, then \mathbb{F} contains p^{m} elements for some prime p and integer $m \geq 1$.

Finite Fields

- A finite field is a field \mathbb{F} which contains a finite number of elements.
- If \mathbb{F} is a finite field, then \mathbb{F} contains p^{m} elements for some prime p and integer $m \geq 1$.
- For every prime power order p^{m}, there is a ! finite field of order p^{m}. This field is denoted by $\mathbb{F}_{p^{m}}$, or sometimes by $G F\left(p^{m}\right)$.

Finite Fields

- A finite field is a field \mathbb{F} which contains a finite number of elements.
- If \mathbb{F} is a finite field, then \mathbb{F} contains p^{m} elements for some prime p and integer $m \geq 1$.
- For every prime power order p^{m}, there is a ! finite field of order p^{m}. This field is denoted by $\mathbb{F}_{p^{m}}$, or sometimes by $G F\left(p^{m}\right)$.
- For $m=1, \mathbb{F}_{p}$ or $G F(p)$ is a field. If p is a prime then \mathbb{Z}_{p} is a field.

$$
\mathbb{F}_{p} \cong G F(p) \cong \mathbb{Z}_{p}
$$

Finite Fields

- Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
- Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
- Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.

Finite Fields

- Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
- Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
- Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.
- The non-zero elements of \mathbb{F}_{q} form a group under multiplication called the multiplicative group of \mathbb{F}_{q}, denoted by \mathbb{F}_{q}^{*}.

Finite Fields

- Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
- Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
- Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.
- The non-zero elements of \mathbb{F}_{q} form a group under multiplication called the multiplicative group of \mathbb{F}_{q}, denoted by \mathbb{F}_{q}^{*}.
- \mathbb{F}_{q}^{*} is a cyclic group of order $q-1$. Hence $a^{q}=a, \forall a \in \mathbb{F}_{q}$.

Finite Fields

- Let \mathbb{F}_{q} be a finite field of order $q=p^{m}$.
- Then every subfield of \mathbb{F}_{q} has order p^{n}, for some n which is a positive divisor of m.
- Conversely, if n is a positive divisor of m, then there is exactly one subfield of \mathbb{F}_{q} of order p^{n}.
- The non-zero elements of \mathbb{F}_{q} form a group under multiplication called the multiplicative group of \mathbb{F}_{q}, denoted by \mathbb{F}_{q}^{*}.
- \mathbb{F}_{q}^{*} is a cyclic group of order $q-1$. Hence $a^{q}=a, \forall a \in \mathbb{F}_{q}$.
- A generator of the cyclic group \mathbb{F}_{q}^{*} is called a primitive element or generator of \mathbb{F}_{q}.

Finite Fields

Subfields of \mathbb{F}_{230} and their relation:

Finite Fields

Subfields of $\mathbb{F}_{2^{30}}$ and their relation:

Finite Fields

Subfields of $\mathbb{F}_{q^{36}}$ and their relation:

Finite Fields

Subfields of $\mathbb{F}_{q^{36}}$ and their relation:

Types of Rings

Types of Rings

Rings

Construction of Finite Field of Order p^{m}

Construction of Finite Field of Order p^{m}

- First select an irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m.
- The ideal $<f(x)>$ is

Construction of Finite Field of Order p^{m}

- First select an irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m.
- The ideal $<f(x)>$ is a maximal ideal.
- Then $Z_{p}[x] /<f(x)>$ is a

Construction of Finite Field of Order p^{m}

- First select an irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m.
- The ideal $<f(x)>$ is a maximal ideal.
- Then $Z_{p}[x] /<f(x)>$ is a finite field of order p^{m}.
- For each $m \geq 1, \exists$ a monic irreducible polynomial of degree m over \mathbb{Z}_{p}.

Hence, every finite field has a polynomial basis representation.

Construction of Finite Field of Order p^{m}

Theorem

The number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree n is given by

$$
\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}
$$

where μ is Möbius function.

Construction of Finite Field of Order p^{m}

Theorem

The number of monic irreducible polynomials in $\mathbb{F}_{q}[x]$ of degree n is given by

$$
\frac{1}{n} \sum_{d \mid n} \mu(d) q^{n / d}
$$

where μ is Möbius function.

Definition

TheMöbius function μ is the function on \mathbb{N} defined by

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{k} & \text { if } n \text { is the product of } k \text { distinct primes } \\ 0 & \text { if } n \text { is divisible by square of a prime }\end{cases}
$$

Computing Multiplicative Inverses in $\mathbb{F}_{p^{m}}$

Algorithm

Input: a non-zero polynomial $g(x) \in \mathbb{F}_{p^{m}}{ }^{a}$.
Output: $g(x)^{-1} \in \mathbb{F}_{p^{m}}$.

Computing Multiplicative Inverses in $\mathbb{F}_{p^{m}}$

Algorithm

Input: a non-zero polynomial $g(x) \in \mathbb{F}_{p^{m}}{ }^{a}$.
Output: $g(x)^{-1} \in \mathbb{F}_{p^{m}}$.
(1) Use the extended Euclidean algorithm for polynomials to find 2 polynomials $s(x) \& t(x) \in \mathbb{Z}_{p}[x] \mathrm{s} / \mathrm{t}$

$$
s(x) g(x)+t(x) f(x)=1
$$

Computing Multiplicative Inverses in $\mathbb{F}_{p^{m}}$

Algorithm

Input: a non-zero polynomial $g(x) \in \mathbb{F}_{p^{m}}{ }^{a}$.
Output: $g(x)^{-1} \in \mathbb{F}_{p^{m}}$.
(1) Use the extended Euclidean algorithm for polynomials to find 2 polynomials $s(x) \& t(x) \in \mathbb{Z}_{p}[x] \mathbf{s} / \mathrm{t}$

$$
s(x) g(x)+t(x) f(x)=1
$$

(2) Return $(s(x))$.
${ }^{a}$ The elements of the field $\mathbb{F}_{p^{m}}$ are represented as $\mathbb{Z}_{p}[x] /<f(x)>$, where $f(x) \in \mathbb{Z}_{p}[x]$ is an irreducible polynomial of degree m over \mathbb{Z}_{p}.

Finite Fields

Definition

An irreducible polynomial $f \in \mathbb{Z}_{p}[x]$ of degree m is called a primitive polynomial if α is a generator of $\mathbb{F}_{p^{m}}^{*}$, the multiplicative group of all the non-zero elements in $\mathbb{F}_{p^{m}}=\mathbb{Z}_{p}[x] /<f(x)>$, where α is a root of the polynomial $f(x)$ over its extension field.

Finite Fields

Definition

An irreducible polynomial $f \in \mathbb{Z}_{p}[x]$ of degree m is called a primitive polynomial if α is a generator of $\mathbb{F}_{p^{m}}^{*}$, the multiplicative group of all the non-zero elements in $\mathbb{F}_{p^{m}}=\mathbb{Z}_{p}[x] /<f(x)>$, where α is a root of the polynomial $f(x)$ over its extension field.

- The irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m is a primitive polynomial iff $f(x) \mid x^{k}-1$ for $k=p^{m}-1$ and for no smaller positive integer k.

Finite Fields

Definition

An irreducible polynomial $f \in \mathbb{Z}_{p}[x]$ of degree m is called a primitive polynomial if α is a generator of $\mathbb{F}_{p^{m}}^{*}$, the multiplicative group of all the non-zero elements in $\left.\mathbb{F}_{p^{m}}=\mathbb{Z}_{p}[x] /<f(x)\right\rangle$, where α is a root of the polynomial $f(x)$ over its extension field.

- The irreducible polynomial $f(x) \in \mathbb{Z}_{p}[x]$ of degree m is a primitive polynomial iff $f(x) \mid x^{k}-1$ for $k=p^{m}-1$ and for no smaller positive integer k.
- For each $m \geq 1, \exists$ a monic primitive polynomial of degree m over \mathbb{Z}_{p}. In fact, there are precisely $\frac{\phi\left(p^{m}-1\right)}{m}$ such polynomials.

Example

- Addition (in the field $G F\left(2^{8}\right)$)

The sum of two elements is the polynomial with coefficients that are given by the sum modulo 2 of the coefficients of the two terms.

Example

- Addition (in the field $G F\left(2^{8}\right)$)

The sum of two elements is the polynomial with coefficients that are given by the sum modulo 2 of the coefficients of the two terms.

Example

$$
57+83=?
$$

Example

- Addition (in the field $G F\left(2^{8}\right)$)

The sum of two elements is the polynomial with coefficients that are given by the sum modulo 2 of the coefficients of the two terms.

Example

$$
\begin{gathered}
57+83=? \\
\left(x^{6}+x^{4}+x^{2}+x+1\right)+\left(x^{7}+x+1\right)=x^{7}+x^{6}+x^{4}+x^{2}=D 4
\end{gathered}
$$

Example

- Multiplication

Multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial over $G F(2)$ of degree 8. For Rijndael, the inventors selected the following irreducible polynomial

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1 \text { or } 11 B
$$

Example

- Multiplication

Multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial over $G F(2)$ of degree 8. For Rijndael, the inventors selected the following irreducible polynomial

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1 \text { or } 11 B
$$

Example

$$
57 \times 83=?
$$

Example

- Multiplication

Multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial over $G F(2)$ of degree 8. For Rijndael, the inventors selected the following irreducible polynomial

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1 \text { or } 11 B
$$

Example

$$
57 \times 83=?
$$

$\left(x^{6}+x^{4}+x^{2}+x+1\right) \times\left(x^{7}+x+1\right)$

$$
=x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1
$$

Example

- Multiplication

Multiplication in $G F\left(2^{8}\right)$ corresponds with multiplication of polynomials modulo an irreducible polynomial over $G F(2)$ of degree 8. For Rijndael, the inventors selected the following irreducible polynomial

$$
m(x)=x^{8}+x^{4}+x^{3}+x+1 \text { or } 11 B
$$

Example

$$
57 \times 83=?
$$

$\left(x^{6}+x^{4}+x^{2}+x+1\right) \times\left(x^{7}+x+1\right)$

$$
=x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1
$$

$x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1 \bmod m(x)$

$$
=x^{7}+x^{6}+1=C 1
$$

Outline

(1) Maths for Symmetric/Private Key Crypto - Algebra
 - Rings
 - Finite Fields

(2) Maths for Asymmetric/Public Key Crypto

- Number Theory
- Primality Testing

What is Number Theory?

Number theory is concerned mainly with the study of the properties (e.g., the divisibility) of the integers

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots,\}
$$

particularly the positive integers $Z^{+}=\{1,2,3, \ldots\}$.

What is Number Theory?

Number theory is concerned mainly with the study of the properties (e.g., the divisibility) of the integers

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots,\}
$$

particularly the positive integers $Z^{+}=\{1,2,3, \ldots\}$.
For example, in divisibility theory, all positive integers can be classified into three classes:
(1) Unit: 1.
(2) Prime numbers: $2,3,5,7,11,13,17,19, \ldots$.
(3) Composite numbers: $4,6,8,9,10,12,14,15, \ldots$.

Famous Quotations Related to Number Theory

The great mathematician Carl Friedrich Gauss called this subject arithmetic and he said:
"Mathematics is the queen of sciences and arithmetic the queen of mathematics."

Famous Quotations Related to Number Theory

Prof G. H. Hardy

In the $1^{s t}$ quotation Prof Hardy is speaking of the famous Indian Mathematician Ramanujan. This is the source of the often made statement that Ramanujan knew each integer personally.
(1) I remember once going to see him when he was lying ill at Putney. I had ridden in taxi cab number 1729 and remarked that number seemed to me rather dull one and that I hoped it was not an unfavorable omen. "No", he replied it is a very interesting number; it is the smallest number expressible as the sum of cubes of two integers in two different ways.

Famous Quotations Related to Number Theory

Prof G. H. Hardy

In the $1^{\text {st }}$ quotation Prof Hardy is speaking of the famous Indian Mathematician Ramanujan. This is the source of the often made statement that Ramanujan knew each integer personally.
(1) I remember once going to see him when he was lying ill at Putney. I had ridden in taxi cab number 1729 and remarked that number seemed to me rather dull one and that I hoped it was not an unfavorable omen. "No", he replied it is a very interesting number; it is the smallest number expressible as the sum of cubes of two integers in two different ways.
(2) Pure mathematics is on the whole distinctly more useful than applied. For what is useful above all is technique and mathematical technique is taught mainly through pure mathematics.

The Floor \& Ceiling of a Real Number

Definition

(1) The floor or the greatest integer function is defined as

$$
\lfloor x\rfloor=\max \{n \in \mathbb{Z}: n \leq x\}
$$

(2) The ceiling or the least integer function is defined as

$$
\lceil x\rceil=\min \{n \in \mathbb{Z}: n \geq x\}
$$

(3) The nearest integer function is defined as

$$
\lfloor x\rceil=\lfloor x+1 / 2\rfloor
$$

Computational Number Theory

Computational Number Theory := Number Theory \oplus Computation Theory
$\quad \Downarrow$
Primality Testing
Integer Factorization
Discrete Logarithms
Elliptic Curves
Conjecture Verification Theorem Proving

Elementary Number Theory
Algebraic Number Theory
Combinatorial Number Theory Analytic Number Theory Arithmetic Algebraic Geometry Probabilistic Number Theory Applied Number Theory

Computability Theory Complexity Theory Infeasibility Theory
Computer Algorithms
Computer Architectures
Quantum Computing
Biological Computing

Modular Arithmetic

- The Division Algorithm: If $a, b \in \mathbb{Z} \& b>0$, then $\exists!q \& r \in \mathbb{Z} \mathbf{s} / \mathrm{t}$

$$
a=q \cdot b+r, \text { where } 0 \leq r<b .
$$

q is called the quotient and r is called the remainder.

Modular Arithmetic

- The Division Algorithm: If $a, b \in \mathbb{Z} \& b>0$, then $\exists!q \& r \in \mathbb{Z} \mathbf{s} / \mathrm{t}$

$$
a=q \cdot b+r, \text { where } 0 \leq r<b .
$$

q is called the quotient and r is called the remainder.

- We can also write

$$
a \equiv r \bmod b
$$

Modular Arithmetic

- The Division Algorithm: If $a, b \in \mathbb{Z} \& b>0$, then $\exists!q \& r \in \mathbb{Z} \mathbf{s} / \mathrm{t}$

$$
a=q \cdot b+r, \text { where } 0 \leq r<b .
$$

q is called the quotient and r is called the remainder.

- We can also write

$$
a \equiv r \bmod b
$$

- Let $a, b \in \mathbb{Z}$. If $a \neq 0 \& b \neq 0$, we define greatest common divisor or $\operatorname{gcd}(a, b)$ to be the largest integer $d \mathrm{~s} / \mathrm{t} d|a \& d| b$. We define $\operatorname{gcd}(0,0)=0$.

Modular Arithmetic

Euclidean algorithm for computing

the $\operatorname{gcd}(a, b)$
Input: 2 non-negative integers
$a \& b$, with $a \geq b$.
Output: $\operatorname{gcd}(a, b)$
(1) While $(b \neq 0)$ do
(5.) Set $r \leftarrow a \bmod b$, $a \leftarrow b, b \leftarrow r$.
(2) Return(a)

Modular Arithmetic

Euclidean algorithm for computing

the $\operatorname{gcd}(a, b)$

$$
\operatorname{gcd}(4864,3458)
$$

Input: 2 non-negative integers
$a \& b$, with $a \geq b$.
Output: $\operatorname{gcd}(a, b)$
(1) While $(b \neq 0)$ do
(5.) Set $r \leftarrow a \bmod b$, $a \leftarrow b, b \leftarrow r$.
(2) Return(a)

Modular Arithmetic

Euclidean algorithm for computing

the $\operatorname{gcd}(a, b)$
Input: 2 non-negative integers
$a \& b$, with $a \geq b$.
Output: $\operatorname{gcd}(a, b)$
(1) While $(b \neq 0)$ do
(5.) Set $r \leftarrow a \bmod b$, $a \leftarrow b, b \leftarrow r$.

$$
\begin{aligned}
& \operatorname{gcd}(4864,3458) \\
& 4864=1.3458+1406 \\
& 3458=2.1406+646 \\
& 1406=2.646+114 \\
& 646=5.114+76 \\
& 114=1.76+38 \\
& 76=2.38+0 .
\end{aligned}
$$

(2) Return(a)

Modular Arithmetic

Euclidean algorithm for computing

 the $\operatorname{gcd}(a, b)$Input: 2 non-negative integers $a \& b$, with $a \geq b$.
Output: $\operatorname{gcd}(a, b)$
(1) While $(b \neq 0)$ do
(5.) Set $r \leftarrow a \bmod b$, $a \leftarrow b, b \leftarrow r$.

$$
\operatorname{gcd}(4864,3458)
$$

4864	$=1.3458+1406$
3458	$=2.1406+646$
1406	$=2.646+114$
646	$=5.114+76$
114	$=1.76+38$
76	$=2.38+0$.

(2) Return(a)

Bezout's Lemma

$$
\forall a, b \in \mathbb{Z}, \exists s, t \in \mathbb{Z} \mathbf{s} / \mathrm{t} \operatorname{gcd}(a, b)=s . a+t . b
$$

Modular Arithmetic

Extended Euclidean algorithm

Input: 2 non-negative integers $a \& b$, with $a \geq b$. Output: $d=\operatorname{gcd}(a, b) \& x, y \in \mathbb{Z} \mathrm{~s} / \mathrm{t} a x+b y=d$.
(1) If $b=0$ then set $d \leftarrow a, x \leftarrow 1, y \leftarrow 0$, and return (d, x, y).
(2) Set $x_{2} \leftarrow 1, x_{1} \leftarrow 0, y_{2} \leftarrow 0, y_{1} \leftarrow 1$.
(3) While $(b>0)$ do
3.1) $q \leftarrow\lfloor a / b\rfloor, r \leftarrow a-q b, x \leftarrow$ $x_{2}-q x_{1}, y \leftarrow y_{2}-q y_{1}$.
(3.2) $a \leftarrow b, b \leftarrow r, x_{2} \leftarrow x_{1}, x_{1} \leftarrow x, y_{2} \leftarrow$ y_{1}, and $y_{1} \leftarrow y$.
(4) Set $d \leftarrow a, x \leftarrow x_{2}, y \leftarrow y_{2}$, and $\operatorname{return}(d, x, y)$.

Modular Arithmetic

Extended Euclidean algorithm

Input: 2 non-negative integers $a \& b$, with $a \geq b$.
Output: $d=\operatorname{gcd}(a, b) \& x, y \in \mathbb{Z} \mathbf{s} / \mathrm{t} a x+b y=d$.
(1) If $b=0$ then set $d \leftarrow a, x \leftarrow 1, y \leftarrow 0$, and $\operatorname{return}(d, x, y)$.
(2) Set $x_{2} \leftarrow 1, x_{1} \leftarrow 0, y_{2} \leftarrow 0, y_{1} \leftarrow 1$.
(3) While $(b>0)$ do
3.1) $q \leftarrow\lfloor a / b\rfloor, r \leftarrow a-q b, x \leftarrow$ $x_{2}-q x_{1}, y \leftarrow y_{2}-q y_{1}$.
(3.2) $a \leftarrow b, b \leftarrow r, x_{2} \leftarrow x_{1}, x_{1} \leftarrow x, y_{2} \leftarrow$ y_{1}, and $y_{1} \leftarrow y$.
(4) Set $d \leftarrow a, x \leftarrow x_{2}, y \leftarrow y_{2}$, and $\operatorname{return}(d, x, y)$.

Modular Arithmetic

Extended Euclidean algorithm

Input: 2 non-negative integers $a \& b$, with $a \geq b$. Output: $d=\operatorname{gcd}(a, b) \& x, y \in \mathbb{Z} \mathbf{s} / \mathrm{t} a x+b y=d$.
(1) If $b=0$ then set $d \leftarrow a, x \leftarrow 1, y \leftarrow 0$, and return (d, x, y).
(2) Set $x_{2} \leftarrow 1, x_{1} \leftarrow 0, y_{2} \leftarrow 0, y_{1} \leftarrow 1$.
(3) While $(b>0)$ do
3.1) $q \leftarrow\lfloor a / b\rfloor, r \leftarrow a-q b, x \leftarrow$ $x_{2}-q x_{1}, y \leftarrow y_{2}-q y_{1}$.
(3.2) $a \leftarrow b, b \leftarrow r, x_{2} \leftarrow x_{1}, x_{1} \leftarrow x, y_{2} \leftarrow$

$$
38=32.4864-45.3458
$$

y_{1}, and $y_{1} \leftarrow y$.
(4) Set $d \leftarrow a, x \leftarrow x_{2}, y \leftarrow y_{2}$, and $\operatorname{return}(d, x, y)$.

Modular Arithmetic

The set \mathbb{Z}_{n} and its properties

- $\mathbb{Z}_{n}=\{0,1,2,3, \cdots, n-1\}$

Modular Arithmetic

The set \mathbb{Z}_{n} and its properties

- $\mathbb{Z}_{n}=\{0,1,2,3, \cdots, n-1\}$
- Is \mathbb{Z}_{n} a group? If so, what is the group operator?

Modular Arithmetic

The set \mathbb{Z}_{n} and its properties

- $\mathbb{Z}_{n}=\{0,1,2,3, \cdots, n-1\}$
- Is \mathbb{Z}_{n} a group? If so, what is the group operator?
- Is \mathbb{Z}_{n} an abelian group?

Modular Arithmetic

The set \mathbb{Z}_{n} and its properties

- $\mathbb{Z}_{n}=\{0,1,2,3, \cdots, n-1\}$
- Is \mathbb{Z}_{n} a group? If so, what is the group operator?
- Is \mathbb{Z}_{n} an abelian group?
- Is \mathbb{Z}_{n} a ring?

Modular Arithmetic

The set \mathbb{Z}_{n} and its properties

- $\mathbb{Z}_{n}=\{0,1,2,3, \cdots, n-1\}$
- Is \mathbb{Z}_{n} a group? If so, what is the group operator?
- Is \mathbb{Z}_{n} an abelian group?
- Is \mathbb{Z}_{n} a ring?
- Why is \mathbb{Z}_{n} not an integral domain?

Modular Arithmetic

The set \mathbb{Z}_{n} and its properties

- $\mathbb{Z}_{n}=\{0,1,2,3, \cdots, n-1\}$
- Is \mathbb{Z}_{n} a group? If so, what is the group operator?
- Is \mathbb{Z}_{n} an abelian group?
- Is \mathbb{Z}_{n} a ring?
- Why is \mathbb{Z}_{n} not an integral domain?

Note that the multiplicative inverses exist for only those elements of $a \in \mathbb{Z}_{n}$ that are relatively prime to n, i.e., $\operatorname{gcd}(a, n)=1$

Modular Arithmetic

- The existence of the multiplicative inverse for an element $a \in \mathbb{Z}_{n}$ is predicated on a being relatively prime to n.

Modular Arithmetic

- The existence of the multiplicative inverse for an element $a \in \mathbb{Z}_{n}$ is predicated on a being relatively prime to n.
- 2 integers $a \& b$ are said to be relatively prime or coprime if $\operatorname{gcd}(a, b)=1$.

Modular Arithmetic

- The existence of the multiplicative inverse for an element $a \in \mathbb{Z}_{n}$ is predicated on a being relatively prime to n.
- 2 integers $a \& b$ are said to be relatively prime or coprime if $\operatorname{gcd}(a, b)=1$.
- An integer $p \geq 2$ is said to be prime if its only positive divisors are $1 \& p$. Otherwise, p is called composite.

Modular Arithmetic

- The existence of the multiplicative inverse for an element $a \in \mathbb{Z}_{n}$ is predicated on a being relatively prime to n.
- 2 integers $a \& b$ are said to be relatively prime or coprime if $\operatorname{gcd}(a, b)=1$.
- An integer $p \geq 2$ is said to be prime if its only positive divisors are $1 \& p$. Otherwise, p is called composite.
- There are an infinite number of prime numbers.
- If $n>1$ is composite then n has a prime divisor $p \leq \sqrt{n}$

Prime Numbers

Prime Number Theorem

Let $\pi(x)$ denote the number of prime numbers $\leq x$. Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

Prime Numbers

Prime Number Theorem

Let $\pi(x)$ denote the number of prime numbers $\leq x$. Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1
$$

Fundamental Theorem of Arithmetic

Every integer $n \geq 2$ has a factorization as a product of prime powers:

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}},
$$

where the p_{i} are distinct primes, and the e_{i} are positive integers.
Furthermore, the factorization is ! up to rearrangement of factors.

Strong Prime Number

Definition

A prime p is called a strong prime if
(1) $p-1$ has a large prime factor, say r,
(1) $p+1$ has a large prime factor, and
(II) $r-1$ has a large prime factor.

Definition

For $n \geq 1$, let $\phi(n)$ denote the number of integers in the interval $[1, n]$ which are relatively prime to n. The function ϕ is called the Euler phi function.

Definition

For $n \geq 1$, let $\phi(n)$ denote the number of integers in the interval $[1, n]$ which are relatively prime to n. The function ϕ is called the Euler phi function.

Properties of Euler phi function

(1.) If p is a prime, then $\phi(p)=p-1$.

Definition

For $n \geq 1$, let $\phi(n)$ denote the number of integers in the interval $[1, n]$ which are relatively prime to n. The function ϕ is called the Euler phi function.

Properties of Euler phi function

(1.) If p is a prime, then $\phi(p)=p-1$.
(1.) The Euler phi function is multiplicative. That is, if $\operatorname{gcd}(m, n)=1$, then

$$
\phi(m n)=\phi(m) \phi(n) .
$$

Definition

For $n \geq 1$, let $\phi(n)$ denote the number of integers in the interval $[1, n]$ which are relatively prime to n. The function ϕ is called the Euler phi function.

Properties of Euler phi function

(1. If p is a prime, then $\phi(p)=p-1$.
(1.) The Euler phi function is multiplicative. That is, if $\operatorname{gcd}(m, n)=1$, then

$$
\phi(m n)=\phi(m) \phi(n)
$$

(ii. If $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{k}^{e_{k}}$, is the prime factorization of n, then

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

Modular Arithmetic

Chinese Remainder Theorem

If the integers $n_{1}, n_{2}, \cdots, n_{k}$ are pairwise relatively prime, then the system of simultaneous congruences

$$
x \equiv a_{i} \bmod n_{i}
$$

for $1 \leq i \leq k$ has a ! solution modulo $n=n_{1} n_{2} \cdots n_{k}$ which is given by

$$
x=\sum_{i=1}^{k} a_{i} N_{i} M_{i} \bmod n
$$

where $N_{i}=n / n_{i} \& M_{i}=N_{i}^{-1} \bmod n_{i}$.

Repeated Square Algorithm for Integers in \mathbb{Z}_{n}

```
Algorithm
Input: b, m,n
Output: }\mp@subsup{b}{}{m}\operatorname{mod}
P\leftarrow1
if m=0 then
    | return P
end
while }m\not=0\mathrm{ do
    if m}\mathrm{ is odd then
        | }P\leftarrowP.b mod 
        end
        m\leftarrow\lfloor\frac{m}{2}\rfloor
    b\leftarrow\mp@subsup{b}{}{2}\operatorname{mod}n
end
```

Return: P

Modular Arithmetic

- The multiplicative group of \mathbb{Z}_{n} is

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\} .
$$

Modular Arithmetic

- The multiplicative group of \mathbb{Z}_{n} is

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\} .
$$

- Fermat's theorem: If $\operatorname{gcd}(a, p)=1$, then

$$
a^{p-1} \equiv 1 \bmod p
$$

Modular Arithmetic

- The multiplicative group of \mathbb{Z}_{n} is

$$
\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n}: \operatorname{gcd}(a, n)=1\right\} .
$$

- Fermat's theorem: If $\operatorname{gcd}(a, p)=1$, then

$$
a^{p-1} \equiv 1 \bmod p
$$

- Euler's theorem: If $a \in \mathbb{Z}_{n}^{*}$, then

$$
a^{\phi(n)} \equiv 1 \bmod n .
$$

Modular Arithmetic

Properties of generators of \mathbb{Z}_{n}^{*}

(1) \mathbb{Z}_{n}^{*} has a generator iff $n=2,4, p^{k}$ or $2 p^{k}$, where p is an odd prime and $k \geq 1$.

Modular Arithmetic

Properties of generators of \mathbb{Z}_{n}^{*}

(1) \mathbb{Z}_{n}^{*} has a generator iff $n=2,4, p^{k}$ or $2 p^{k}$, where p is an odd prime and $k \geq 1$.
(1. Suppose that α is a generator of \mathbb{Z}_{n}^{*}. Then $b=\alpha^{i} \bmod n$ is also a generator of \mathbb{Z}_{n}^{*} iff $\operatorname{gcd}(i, \phi(n))=1$. It follows that if \mathbb{Z}_{n}^{*} is cyclic, then the number of generators is $\phi(\phi(n))$.

Modular Arithmetic

Properties of generators of \mathbb{Z}_{n}^{*}

(1) \mathbb{Z}_{n}^{*} has a generator iff $n=2,4, p^{k}$ or $2 p^{k}$, where p is an odd prime and $k \geq 1$.
(1. Suppose that α is a generator of \mathbb{Z}_{n}^{*}. Then $b=\alpha^{i} \bmod n$ is also a generator of \mathbb{Z}_{n}^{*} iff $\operatorname{gcd}(i, \phi(n))=1$. It follows that if \mathbb{Z}_{n}^{*} is cyclic, then the number of generators is $\phi(\phi(n))$.
(1.) $\alpha \in \mathbb{Z}_{n}^{*}$ is a generator of \mathbb{Z}_{n}^{*} iff $\alpha^{\phi(n) / p} \not \equiv 1 \bmod n$ for each prime divisor p of $\phi(n)$.

Probabilistic Algorithm

Definition

A probabilistic algorithm is an algorithm that uses random numbers.
A probabilistic algorithm for a decision problem is called yes-biased Monte Carlo algorithm if the answer YES is always correct, but a NO answer may be incorrect.

We say that the algorithm has error probability ϵ if the probability that the algorithm will answer NO when the answer is actually YES is ϵ.

Probabilistic Algorithm

```
Pseudo-prime Test
Input: n
Output: YES if n is composite, NO otherwise.
Choose a random b,0<b<n
if gcd}(b,n)>1\mathrm{ then
    | return YES
end
else
;
if }\mp@subsup{b}{}{n-1}\not\equiv1\operatorname{mod}n\mathrm{ then
    | return YES
end
else ;
return NO
```


Probabilistic Algorithm

Miller-Rabin Test

Input: an odd integer $n \geq 3$ and security parameter $t \geq 1$.
Output: an answer "prime" or "composite" to the question: "ls n prime?"
Write $n-1=2^{s} . r \mathrm{~s} / \mathrm{t} r$ is odd.
for $i=1$ to t do
Choose a random integer $a \mathrm{~s} / \mathrm{t} 2 \leq a \leq n-2$.
Compute $y \equiv a^{r} \bmod n$
if $y \neq 1 \& y \neq n-1$ then
$j \leftarrow 1$.
while $j \leq s-1 \& y \neq n-1$ do
Compute $y \leftarrow y^{2} \bmod n$.
If $y=1$ then return("composite").
$j \leftarrow j+1$.
end
If $y \neq n-1$ then return ("composite").
end
end
Return("prime").

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer $n>1$
Output: n is Prime or Composite in deterministic polynomial-time If $n=a^{b}$ with $a \in \mathbb{N} \& b>1$, then output COMPOSITE.

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer $n>1$
Output: n is Prime or Composite in deterministic polynomial-time If $n=a^{b}$ with $a \in \mathbb{N} \& b>1$, then output COMPOSITE.
Find the smallest r such that $\operatorname{ord}_{r}(n)>4(\log n)^{2}$.
If $1<\operatorname{gcd}(a, n)<n$ for some $a \leq r$, then output COMPOSITE.

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer $n>1$
Output: n is Prime or Composite in deterministic polynomial-time If $n=a^{b}$ with $a \in \mathbb{N} \& b>1$, then output COMPOSITE.
Find the smallest r such that $\operatorname{ord}_{r}(n)>4(\log n)^{2}$.
If $1<\operatorname{gcd}(a, n)<n$ for some $a \leq r$, then output COMPOSITE.
If $n \leq r$, then output PRIME.

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer $n>1$
Output: n is Prime or Composite in deterministic polynomial-time If $n=a^{b}$ with $a \in \mathbb{N} \& b>1$, then output COMPOSITE.
Find the smallest r such that $\operatorname{ord}_{r}(n)>4(\log n)^{2}$.
If $1<\operatorname{gcd}(a, n)<n$ for some $a \leq r$, then output COMPOSITE.
If $n \leq r$, then output PRIME.
for $a=1$ to $\lfloor 2 \sqrt{\phi(r)} \log n\rfloor$ do
if $(x-a)^{n} \not \equiv\left(x^{n}-a\right) \bmod \left(x^{r}-1, n\right)$,
then output COMPOSITE.
end
Return("PRIME").

Primitive Root

Definition

The smallest positive integer e s/t

$$
a^{e} \equiv 1 \quad \bmod m
$$

is called exponent of a modulo m and is denoted by

$$
e=\exp _{m}(a)
$$

If $\exp _{m}(a)=\phi(m)$, then a is called primitive root $\bmod m$.

Some Facts About Primitive Roots

- Primitive roots exist only for the following moduli: $m=1,2,4, p^{\alpha} \& 2 p^{\alpha}$, where p is an odd prime $\alpha \geq 1$.
- If a is a generator of \mathbb{Z}_{m}^{*}, then
$\mathbb{Z}_{m}^{*}=\left\{a^{i} \bmod m: 0 \leq i \leq \phi(m)-1\right\}$
- Suppose that a is a generator of \mathbb{Z}_{m}^{*}. Then $b=a^{i} \bmod m$ is also a generator of \mathbb{Z}_{m}^{*} iff $\operatorname{gcd}(i, \phi(m))=1$. It follows that if \mathbb{Z}_{m}^{*} is cyclic, then the number of generators is $\phi(\phi(m))$.
- a is a generator of \mathbb{Z}_{m}^{*} iff $a^{\phi(m) / p} \not \equiv 1 \bmod m$ for each prime divisor p of $\phi(m)$.

The End

Thanks a lot for your attention!

