Public Key Cryptography

Dhananjoy Dey

Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

March 9, 2021

Disclaimers

F

All the pictures used in this presentation are taken from freely available websites.

2

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

3

Any mention of commercial products or reference to commercial organizations is for information only; it does not imply recommendation or endorsement nor does it imply that the products mentioned are necessarily the best available for the purpose.

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption
- PKC
 - RSA
 - ElGamal
 - Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption
- 4 PKC
 - RSA
 - ElGamal
 - Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

Definition

PKC

A public key cryptosystem is a pair of families $\{E_k : k \in \mathcal{K}\}$ and $\{D_k : k \in \mathcal{K}\}$ of algorithms representing invertible transformations.

$$E_k: \mathcal{M} \to C \& D_k: C \to \mathcal{M}$$

on a finite message space \mathcal{M} and ciphertext space \mathcal{C} , such that

- for every $k \in \mathcal{K}$, D_k is the inverse of E_k and vice versa,
- for every $k \in \mathcal{K}$, $M \in \mathcal{M}$ and $C \in C$, the algorithms E_k and D_k are easy to compute.
- for almost every $k \in \mathcal{K}$, each easily computed algorithm equivalent to D_k is computationally infeasible to derive from E_k ,
- for every $k \in \mathcal{K}$, it is feasible to compute inverse pairs E_k and D_k from k.

Public Key Cryptography

5/81

Definition

Computationally Infeasible

A task is computationally infeasible if either the time taken or the memory required for carrying out the task is finite but impossibly large.

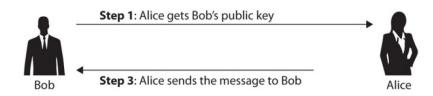
Definition

Computationally Infeasible

A task is computationally infeasible if either the time taken or the memory required for carrying out the task is finite but impossibly large.

Any computational task which takes $\geq 2^{112}$ bit operations, we say, it is computationally infeasible in present day scenario.

PKC



Step 4: Bob decrypts the message with his private key

Even if Eve intercepts the message, she does not have Bob's private key and cannot decrypt the message

Step 2: Alice encrypts the message with Bob's public key

Eve

7/81

Advantages of PKC

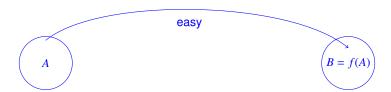
Advantages over symmetric-key

- Better key distribution and management
 - No danger that public key compromised
 - Convert authenticated channel to secure channel in interactive setting
- New protocols
 - Digital Signature
- Long-term encryption

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption
- 4 PKC
 - RSA
 - ElGamal
 - Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

One-way Function



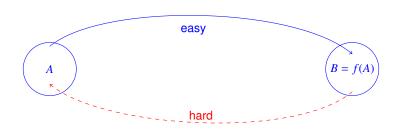
Definition

Easy: \exists a polynomial-time algorithm that, on input $m \in A$ outputs c = f(m).

Definition

Hard: Every probabilistic polynomial-time algorithm trying, on input c = f(m) to find an inverse of $c \in B$ under f, may succeed only with negligible probability.

One-way Function



Definition

Easy: \exists a polynomial-time algorithm that, on input $m \in A$ outputs c = f(m).

Definition

Hard: Every probabilistic polynomial-time algorithm trying, on input c = f(m) to find an inverse of $c \in B$ under f, may succeed only with negligible probability.

Examples of One-way Function

- Cryptographic hash functions, viz., RIPEMD-160, SHA-2 family and SHA-3 (Keccak).
- The function

$$f: \mathbb{Z}_p \to \mathbb{Z}_p,$$

 $x \mapsto x^{2^{24}+17} + a_1.x^{2^{24}+3} + a_2.x^3 + a_3.x^2 + a_4.x + a_5,$

where $p = 2^{64} - 59$ and each $a_i \in \mathbb{Z}_p$ is 19-digit number for 1 < i < 5.

Trapdoor One-way Function

Definition

A trapdoor one-way function is a one-way function $f: \mathcal{M} \to \mathcal{C}$, satisfying the additional property that \exists some additional information or trapdoor that makes it easy for a given $c \in f(\mathcal{M})$ to find out $m \in \mathcal{M}: f(m) = c$, but without the trapdoor this task becomes hard.

Examples Trapdoor One-way Function

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

Examples Trapdoor One-way Function

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

$$IFP \stackrel{def}{=} \begin{cases} Input : n > 1 \\ Output : p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \end{cases}$$

• Discrete Logarithm Problem: Given an abelian group (G, .) and $g \in G$ of order n. Given $h \in G$ such that $h = g^x$ find x ($DLP(g, h) \to x$). \to hard problem.

Examples Trapdoor One-way Function

• Integer Factorization: Given $n \in \mathbb{Z}^+$, find $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$ where the p_i are pairwise distinct primes and each $e_i \ge 0$ for $1 \le i \le k$. \rightarrow hard problem.

$$IFP \stackrel{def}{=} \begin{cases} Input : n > 1 \\ Output : p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \end{cases}$$

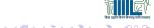
• Discrete Logarithm Problem: Given an abelian group (G, .) and $g \in G$ of order n. Given $h \in G$ such that $h = g^x$ find x ($DLP(g, h) \to x$). \to hard problem.

The DLP over the multiplicative group $\mathbb{Z}_n^* = \{a : 1 \le a \le n, \gcd(a, n) = 1\}.$ DLP may be defined as follows:

$$DLP \stackrel{def}{=} \left\{ \begin{array}{ll} Input & : & x,y \in \mathbb{Z}_n^* \ \& \ n \\ Output & : & k \ s/t \ y \equiv x^k \mod n \end{array} \right.$$

Example Trapdoor One-way Function

• Computational Diffie-Hellman Problem: Given $a = g^x$ and $b = g^y$ find $c = g^{xy}$. $(CDH(g, a, b) \rightarrow c)$. \rightarrow hard problem.



Example Trapdoor One-way Function

- Computational Diffie-Hellman Problem: Given $a = g^x$ and $b = g^y$ find $c = g^{xy}$. ($CDH(g, a, b) \rightarrow c$). \rightarrow hard problem.
- Elliptic Curve Discrete Logarithm Problem (ECDLP): \mathbb{E} denotes the collections of points on a elliptic curve and $P \in \mathbb{E}$. Let S be the cyclic subgroup of \mathbb{E} generated by P. Given $Q \in S$, find an integer x such that $Q = x.P. \rightarrow \text{hard problem}$.

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption
- 4 PKC
 - RSA
 - ElGama
 - Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

DH Key Exchange

Alice

- 1. Alice generates a
- 2. Alice's public value is $g^a \mod p$
- 3. Alice computes $g^{ab} = (g^b)^a \mod p$

Both parties know p and g

Since $g^{ab} = g^{ba}$ they now have a shared secret key usually called $k (K = g^{ab} = g^{ba})$

3ob

- 1. Bob generates b
- 2. Bob's public value is $g^b \mod p$
- 3. Bob computes $g^{ba} = (g^a)^b \mod p$

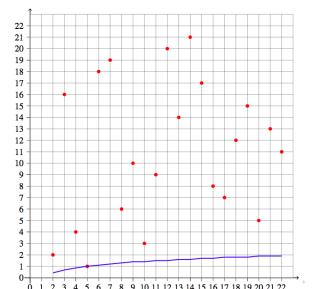
DH Key Exchange

- k is the shared secret key.
- Knowing g, $g^a \& g^b$, it is hard to find g^{ab} .
- Idea of this protocol: The enciphering key can be made public since it is computationally infeasible to obtain the deciphering key from enciphering key.
- This protocol was (supposed to be) the door-opener to PKC.

DH Key Exchange

- k is the shared secret key.
- Knowing g, $g^a \& g^b$, it is hard to find g^{ab} .
- Idea of this protocol: The enciphering key can be made public since it is computationally infeasible to obtain the deciphering key from enciphering key.
- This protocol was (supposed to be) the door-opener to PKC.
- PKCS #3 (Version 1.4): Diffie-Hellman Key-Agreement Standard, An RSA Laboratories Technical Note – Revised November 1, 1993.

Discrete Logarithm mod 23 to The Base 5



 Clifford Cocks, Malcolm Williamson & James Ellis developed Non-secret Encryption between 1969 and 1974.

Clifford Cocks, Malcolm Williamson, and James Ellis.

All were at GCHQ, so this stayed secret until 1997.

Theorem

Suppose $m_1, m_2, \dots, m_r \in \mathbb{Z}^+$: $gcd(m_i, m_j) = 1$ for $i \neq j$. Then $x \equiv a_i \mod m_i$ has! solution $\mod M (= \prod_{i=1}^r m_i)$, which is given by

$$x \equiv \sum_{i=1}^{r} a_i.M_i.y_i \mod M,$$

where $M_i = \frac{M}{m_i} \& y_i = M_i^{-1} \mod m_i$ for $1 \le i \le r$.

Problem

Find x s/t

 $x \equiv 5 \mod 7, x \equiv 3 \mod 11, x \equiv 10 \mod 13$

Problem

Find x s/t

 $x \equiv 5 \mod 7$, $x \equiv 3 \mod 11$, $x \equiv 10 \mod 13$

Solution

• First we calculate $M = 7 \times 11 \times 13 = 1001$

Problem

Find x s/t

 $x \equiv 5 \mod 7, x \equiv 3 \mod 11, x \equiv 10 \mod 13$

Solution

- First we calculate $M = 7 \times 11 \times 13 = 1001$
- 2 After that we compute M_1, M_2, M_3

$$M_1 = \frac{M}{7} = 11 \times 13 = 143$$

$$M_2 = \frac{M}{11} = 7 \times 13 = 91$$

$$M_2 = \frac{\dot{M}}{11} = 7 \times 13 = 91$$

 $M_3 = \frac{\dot{M}}{13} = 7 \times 11 = 77$

Problem

Find x s/t

 $x \equiv 5 \mod 7, x \equiv 3 \mod 11, x \equiv 10 \mod 13$

Solution

- First we calculate $M = 7 \times 11 \times 13 = 1001$
- 2 After that we compute M_1, M_2, M_3

$$M_1 = \frac{M}{7} = 11 \times 13 = 143$$

$$M_2 = \frac{M}{11} = 7 \times 13 = 91$$

$$M_3 = \frac{M}{13} = 7 \times 11 = 77$$

- Now we have to compute
 - $(143)^{-1} \mod 7 \equiv 3^{-1} \mod 7 \equiv 5 \mod 7$
 - $(91)^{-1} \mod 11 \equiv 3^{-1} \mod 11 \equiv 4 \mod 11$
 - $77^{-1} \mod 13 \equiv (12)^{-1} \mod 13 \equiv 12 \mod 13$

Solution

• So, the solution for x is given below:

$$x \equiv [(5 \times 143 \times 5) + (3 \times 91 \times 4) + (10 \times 77 \times 12)] \div 1001$$
$$\equiv [3575 + 1092 + 9240] \mod 1001$$
$$\equiv 13907 \mod 1001$$

Solution

3 So, the solution for x is given below:

$$x \equiv [(5 \times 143 \times 5) + (3 \times 91 \times 4) + (10 \times 77 \times 12)] \div 1001$$
$$\equiv [3575 + 1092 + 9240] \mod 1001$$
$$\equiv 13907 \mod 1001$$

$$\equiv$$
 894 mod 1001

Euclidean algorithm for computing the gcd(a,b)

Input: 2 non-negative integers

a & b, with $a \ge b$.

Output: gcd(a, b)

- While $(b \neq 0)$ do
 - Set $r \leftarrow a \mod b$, $a \leftarrow b$, $b \leftarrow r$.
- 2 Return(a)

Euclidean algorithm for computing the gcd(a, b)

gcd(4864, 3458)

Input: 2 non-negative integers

a & b, with $a \ge b$.

Output: gcd(a, b)

- While $(b \neq 0)$ do
 - Set $r \leftarrow a \mod b$, $a \leftarrow b$, $b \leftarrow r$.
- 2 Return(a)

Euclidean algorithm for computing the gcd(a,b)

Input: 2 non-negative integers

a & b, with $a \ge b$.

Output: gcd(a, b)

- While $(b \neq 0)$ do
 - Set $r \leftarrow a \mod b$, $a \leftarrow b$, $b \leftarrow r$.
- 2 Return(a)

gcd(4864, 3458)

$$3458 = 2.1406 + 646$$

 $1406 = 2.646 + 114$

$$646 = 5.114 + 76$$

$$114 = 1.76 + 38$$

$$76 = 2.38 + 0.$$

Euclidean algorithm for computing

the gcd(a,b)

Input: 2 non-negative integers

a & b, with $a \ge b$.

Output: gcd(a,b)

• While $(b \neq 0)$ do

- Set $r \leftarrow a \mod b$, $a \leftarrow b$, $b \leftarrow r$.
- Return(a)

gcd(4864, 3458)

4864 = 1.3458 + 1406

3458 = 2.1406 + 646

1406 = 2.646 + 114

646 = 5.114 + 76

114 = 1.76 + 38

76 = 2.38 + 0.

Bezout's Lemma

 $\forall a, b \in \mathbb{Z}, \exists s, t \in \mathbb{Z} \text{ s/t } gcd(a, b) = s.a + t.b$

Extended Euclidean algorithm

Input: 2 non-negative integers a & b, with $a \ge b$. **Output:** $d = gcd(a,b) \& x, y \in \mathbb{Z}$ s/t ax + by = d.

- If b = 0 then set $d \leftarrow a$, $x \leftarrow 1$, $y \leftarrow 0$, and return(d, x, y).
- 2 Set $x_2 \leftarrow 1$, $x_1 \leftarrow 0$, $y_2 \leftarrow 0$, $y_1 \leftarrow 1$.
- 3 While (b > 0) do
 - $q \leftarrow \lfloor a/b \rfloor, \ r \leftarrow a qb,$ $x \leftarrow x_2 - qx_1, \ y \leftarrow y_2 - qy_1.$
 - $a \leftarrow b, \ b \leftarrow r, \ x_2 \leftarrow x_1, \\ x_1 \leftarrow x, \ y_2 \leftarrow y_1, \ \text{and} \ y_1 \leftarrow y.$
- 4 Set $d \leftarrow a$, $x \leftarrow x_2$, $y \leftarrow y_2$, and return(d, x, y).

Extended Euclidean algorithm

a = 4864, b = 3458

Input: 2 non-negative integers a & b, with $a \ge b$. **Output:** $d = \gcd(a,b) \& x, y \in \mathbb{Z}$ s/t ax + by = d.

- If b = 0 then set $d \leftarrow a$, $x \leftarrow 1$, $y \leftarrow 0$, and return(d, x, y).
- 2 Set $x_2 \leftarrow 1$, $x_1 \leftarrow 0$, $y_2 \leftarrow 0$, $y_1 \leftarrow 1$.
- 3 While (b > 0) do
 - $\begin{array}{ll}
 \mathbf{0} & q \leftarrow \lfloor a/b \rfloor, \ r \leftarrow a qb, \\
 & x \leftarrow x_2 qx_1, \ y \leftarrow y_2 qy_1.
 \end{array}$
 - $a \leftarrow b, \ b \leftarrow r, \ x_2 \leftarrow x_1, \\ x_1 \leftarrow x, \ y_2 \leftarrow y_1, \ \text{and} \ y_1 \leftarrow y.$
- 4 Set $d \leftarrow a, x \leftarrow x_2, y \leftarrow y_2$, and return(d, x, y).

Extended Euclidean algorithm

Input: 2 non-negative integers a & b, with $a \ge b$. **Output:** $d = gcd(a, b) \& x, y \in \mathbb{Z}$ s/t ax + by = d.

- If b = 0 then set $d \leftarrow a$, $x \leftarrow 1$, $y \leftarrow 0$, and return(d, x, y).
- 2 Set $x_2 \leftarrow 1$, $x_1 \leftarrow 0$, $y_2 \leftarrow 0$, $y_1 \leftarrow 1$.
- While (b > 0) do

$$\begin{array}{ll}
\mathbf{0} & q \leftarrow \lfloor a/b \rfloor, \ r \leftarrow a - qb, \\
 & x \leftarrow x_2 - qx_1, \ y \leftarrow y_2 - qy_1.
\end{array}$$

- $a \leftarrow b, \ b \leftarrow r, \ x_2 \leftarrow x_1, \\ x_1 \leftarrow x, \ y_2 \leftarrow y_1, \ \text{and} \ y_1 \leftarrow y.$
- 4 Set $d \leftarrow a, x \leftarrow x_2, y \leftarrow y_2$, and return(d, x, y).

a = 4864,	b =	3458
-----------	-----	------

3	y_2	x_1	x_2	ь	a	y	x	r	q
	0	0	1	3458	4864	-	-	7-0	-
1	1	1	0	1406	3458	-1	1	1406	1
1	-1	-2	1	646	1406	3	-2	646	2
	3	5	-2	114	646	-7	5	114	2
3	-7	-27	5	76	114	38	-27	76	5
-4	38	32	-27	38	76	-45	32	38	1
12	-45	-91	32	0	38	128	-91	0	2

$$38 = 32.4864 - 45.3458$$

Problem

Find $7^{-1} \mod 26$

Problem

Find $7^{-1} \mod 26$

Solution

• First we find the gcd(7, 26)

Problem

Find $7^{-1} \mod 26$

Solution

• First we find the gcd(7, 26)

$$26 = 3 \times 7 + 5$$

$$7 = 1 \times 5 + 2$$

$$5 = 2 \times 2 + 1$$

$$2 = 1 \times 2 + 0$$

Now, we compute the inverse of 7 mod 26

$$1 = 5 - 2.2$$

$$= 5 - 2(7 - 5)$$

$$= 3.5 - 2.7$$

$$= 3(26 - 3.7) - 2.7$$

$$= 3.26 - 11.7$$

Problem

Find $7^{-1} \mod 26$

Solution

• First we find the gcd(7, 26)

$$26 = 3 \times 7 + 5$$

$$7 = 1 \times 5 + 2$$

$$5 = 2 \times 2 + 1$$

$$2 = 1 \times 2 + 0$$

Now, we compute the inverse of 7 mod 26

$$1 = 5 - 2.2$$

$$= 5 - 2(7 - 5)$$

$$= 3.5 - 2.7$$

$$= 3(26 - 3.7) - 2.7$$

$$= 3.26 - 11.7$$

$$1 \equiv (3.26 + 15.7) \mod 26$$

Problem

Find $7^{-1} \mod 26$

Solution

- First we find the gcd(7, 26)
 - $26 = 3 \times 7 + 5$ $7 = 1 \times 5 + 2$
 - $5 = 2 \times 2 + 1$

$$2 = 1 \times 2 + 0$$

2 Now, we compute the inverse of 7 mod 26

$$1 = 5 - 2.2
= 5 - 2(7 - 5)$$

$$= 3.5 - 2.7$$
$$= 3(26 - 3.7) - 2.7$$

$$= 3.26 - 11.7$$

$$1 \equiv (3.26 + 15.7) \mod 26$$

 $1 \equiv 15.7 \mod 26$

$$15 \equiv 7^{-1} \mod 26$$
Public Key Cryptography

Non-secret Encryption

Key Generation

• Select 2 large distinct primes p & q such that $p \nmid q - 1$ and $q \nmid p - 1$.

Public key: n = pq.

- ② Find numbers r & s, s/t $p.r \equiv 1 \mod (q-1)$ and $q.s \equiv 1 \mod (p-1)$.
- **3** Find u & v, $s/t u.p \equiv 1 \mod q$ and $v.q \equiv 1 \mod p$.

Private key: (p, q, r, s, u, v).

Non-secret Encryption

Encryption

$$C \equiv M^n \mod n \quad for \ 0 \le M < n.$$

Decryption

- $\mathbf{0} \quad a \equiv C^s \mod p \text{ and } b \equiv C^r \mod q.$

Modular Exponentiation by The Repeated Squaring I

Compute $b^n \mod m$

- Use a to denote the partial product.
- 2 We'll have $a \equiv b^n \mod m$.
- 3 We start out with a = 1.
- Let $n_0, n_1, \dots n_{k-1}$ denote the binary digits of n, i.e.,

$$n = n_0 + 2n_1 + 4n_2 + \ldots + 2^{k-1}n_{k-1}$$
.

- If $n_0 = 1$, change a to b (otherwise keep a = 1). Then set $b_1 = b^2 \mod m$
- If $n_1 = 1$, multiply a by b_1 (and reduce $\mod m$); otherwise keep a unchanged.
- Next square b_1 , and set $b_2 = b_1^2 \mod m$

Modular Exponentiation by The Repeated Squaring II

- If $n_2 = 1$, multiply a by b_2 (and reduce $\mod m$); otherwise keep a unchanged.
- Ontinue in this way. You see that in the *j*-th step you have computed $b_j \equiv b^{2^j} \mod m$.
- 10 If $n_j = 1$, i.e., if 2^j occurs in the binary expansion of n, then you include b_j in the product for a (if 2^j is absent from n, then you do not).
- ① It is easy to see that after the (k-1)-st step you'll have the desired

$$a \equiv b^n \mod m$$
.

 $\mathsf{Time}(b^n \mod m) = O((\log n)(\log^2 m)).$

March 9, 2021

Modular Exponentiation by The Repeated Squaring

Example

Let us compute $5^{100} \mod 33$.

Modular Exponentiation by The Repeated Squaring

Example

Let us compute $5^{100} \mod 33$.

$$5^{1} = 5$$

 $5^{2} = 25$
 $5^{4} = 25 \times 25 \equiv 31 \mod 33$
 $5^{8} \equiv 31 \times 31 \equiv 4 \mod 33$
 $5^{16} \equiv 4 \times 4 \equiv 16 \mod 33$
 $5^{32} \equiv 16 \times 16 \equiv 25 \mod 33$
 $5^{64} \equiv 25 \times 25 \equiv 31 \mod 33$
 $5^{96} \equiv 31 \times 25 \equiv 16 \mod 33$
 $5^{100} \equiv 16 \times 31 \equiv 1 \mod 33$

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption
- PKC
 - RSA
 - ElGamal
 - Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

RSA Key Generation

- Generate two large distinct random primes *p* & *q*.
- Compute n = pq and $\phi(n) = (p-1)(q-1)$.
- Select a random integer e, $1 < e < \phi(n)$ s/t $gcd(e, \phi(n)) = 1$.
- Compute the unique integer d, $1 < d < \phi(n)$ s/t

$$ed \equiv 1 \mod \phi(n)$$
.

Public key is (n, e); Private key is (p, q, d).

RSA Encryption/Decryption

Encryption:

$$c \equiv m^e \mod n$$
,

Plaintext m and ciphertext $c \in \mathbb{Z}_n$.

Decryption:

$$m' \equiv c^d \mod n$$
.

RSA Encryption/Decryption

Encryption:

$$c \equiv m^e \mod n$$
,

Plaintext m and ciphertext $c \in \mathbb{Z}_n$.

Decryption:

$$m' \equiv c^d \mod n$$
.

PKCS #1 v2.2: RSA Cryptography Standard, RSA Laboratories - October 27, 2012.

Strong Prime Number

Definition

A prime p is called a strong prime if

- 0 p-1 has a large prime factor, say r,
- p+1 has a large prime factor, and
- mathred r 1 has a large prime factor.

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

Properties of Euler phi function

1 If p is a prime, then $\phi(p) = p - 1$.

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

Properties of Euler phi function

- ① If p is a prime, then $\phi(p) = p 1$.
- **1** The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then

$$\phi(mn) = \phi(m)\phi(n).$$

Definition

For $n \ge 1$, let $\phi(n)$ denote the number of integers in the interval [1, n] which are relatively prime to n. The function ϕ is called the **Euler phi** function.

Properties of Euler phi function

- If p is a prime, then $\phi(p) = p 1$.
- **1** The Euler phi function is multiplicative. That is, if gcd(m, n) = 1, then

$$\phi(mn) = \phi(m)\phi(n).$$

If $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, is the prime factorization of n, then

$$\phi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots \left(1 - \frac{1}{p_k}\right).$$

Modular Arithmetic

• The multiplicative group of \mathbb{Z}_n is

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : gcd(a, n) = 1 \}.$$

Modular Arithmetic

• The multiplicative group of \mathbb{Z}_n is

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : gcd(a, n) = 1 \}.$$

• Fermat's theorem: If gcd(a, p) = 1, for a prime p then

$$a^{p-1} \equiv 1 \mod p$$
.

• The multiplicative group of \mathbb{Z}_n is

$$\mathbb{Z}_n^* = \{ a \in \mathbb{Z}_n : gcd(a, n) = 1 \}.$$

• Fermat's theorem: If gcd(a, p) = 1, for a prime p then

$$a^{p-1} \equiv 1 \bmod p.$$

• Euler's theorem: If $a \in \mathbb{Z}_n^*$, then

$$a^{\phi(n)} \equiv 1 \mod n$$
.

Pseudoprime

Definition

If n is an odd composite number and b is an integer $s/t \gcd(n, b) = 1$ and

$$b^{n-1} \equiv 1 \mod n$$

then n is called a **pseudoprime** to the base b.

Pseudoprime

Definition

If n is an odd composite number and b is an integer $s/t \gcd(n, b) = 1$ and

$$b^{n-1} \equiv 1 \mod n$$

then n is called a **pseudoprime** to the base b.

Example

• The number n = 91 is a pseudoprime to the base b = 3,

$$\therefore 3^{90} \equiv 1 \mod 91.$$

② However, 91 is not a pseudoprime to the base 2, ∴ $2^{90} \equiv 64 \mod 91$.

Carmichael Number

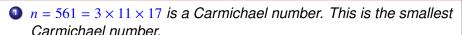
Definition

A Carmichael number is a composite integer n s/t

$$b^{n-1} \equiv 1 \mod n,$$

for every $b \in \mathbb{Z}_n^*$.

Example



Carmichael Number

Definition

A Carmichael number is a composite integer n s/t

$$b^{n-1} \equiv 1 \mod n,$$

for every $b \in \mathbb{Z}_n^*$.

Example

- $n = 561 = 3 \times 11 \times 17$ is a Carmichael number. This is the smallest Carmichael number.
- The following are Carmichael numbers:
 - **1** $1105 = 5 \times 13 \times 17$
 - **2** $1729 = 7 \times 13 \times 19$
 - **3** $2465 = 5 \times 17 \times 29$

Carmichael Number

Definition

A Carmichael number is a composite integer n s/t

$$b^{n-1} \equiv 1 \mod n,$$

for every $b \in \mathbb{Z}_n^*$.

Example

- $n = 561 = 3 \times 11 \times 17$ is a Carmichael number. This is the smallest Carmichael number.
- The following are Carmichael numbers:
 - $1105 = 5 \times 13 \times 17$
 - $21729 = 7 \times 13 \times 19$
 - 3 $2465 = 5 \times 17 \times 29$

RSA Validation

We have to prove $c^d \equiv m \mod n$

RSA Validation

We have to prove $c^d \equiv m \mod n$

First we see the gcd(m, n) =

RSA Validation

We have to prove $c^d \equiv m \mod n$

First we see the gcd(m, n) = 1, p, q, or n

• Case-1: If gcd(m, n) = n,

RSA Validation

We have to prove $c^d \equiv m \mod n$

First we see the gcd(m, n) = 1, p, q, or n

• Case-1: If gcd(m, n) = n, m = 0.

$$c^d \equiv m^{ed} \equiv 0^{ed} \equiv 0 \equiv m \mod n.$$

RSA Validation

We have to prove $c^d \equiv m \mod n$

First we see the gcd(m, n) = 1, p, q, or n

• Case-1: If gcd(m, n) = n, m = 0.

$$c^d \equiv m^{ed} \equiv 0^{ed} \equiv 0 \equiv m \mod n.$$

• Case-2: If gcd(m, n) = 1

RSA Validation

We have to prove $c^d \equiv m \mod n$

First we see the gcd(m, n) = 1, p, q, or n

• Case-1: If gcd(m, n) = n, m = 0.

$$c^d \equiv m^{ed} \equiv 0^{ed} \equiv 0 \equiv m \mod n.$$

• Case-2: If gcd(m, n) = 1

$$c^d \equiv m^{ed} \equiv m.(m^{\phi(n)})^k \equiv m \bmod n$$

RSA Validation

We have to prove $c^d \equiv m \mod n$

First we see the gcd(m, n) = 1, p, q, or n

• Case-1: If gcd(m, n) = n, m = 0.

$$c^d \equiv m^{ed} \equiv 0^{ed} \equiv 0 \equiv m \mod n.$$

• Case-2: If gcd(m, n) = 1

$$c^d \equiv m^{ed} \equiv m.(m^{\phi(n)})^k \equiv m \bmod n$$

by using Euler's theorem $m^{\phi(n)} \equiv 1 \mod n$.

RSA Validation

We have to prove $c^d \equiv m \mod n$

RSA Validation

We have to prove $c^d \equiv m \mod n$

- Case-3: If $gcd(m, n) \neq 1$ and $gcd(m, n) \neq n$
 - $p \mid m \& q \nmid m$.

$$\therefore p \mid m, \ \therefore m \equiv 0 \ mod \ p \Rightarrow m^{ed} \equiv 0 \equiv m \ mod \ p \Rightarrow p \mid (m^{ed} - m).$$

$$\because q \nmid m \Rightarrow \gcd(m,q) = 1 \Rightarrow m^{q-1} \equiv 1 \bmod q.$$

$$\therefore m^{1+k(p-1)(q-1)} \equiv m \bmod q \Rightarrow q \mid (m^{ed} - m).$$

$$\because gcd(p,q) = 1 \Rightarrow pq \mid (m^{ed} - m) \Rightarrow c^d \equiv m \bmod n.$$

RSA Validation

We have to prove $c^d \equiv m \mod n$

- Case-3: If $gcd(m, n) \neq 1$ and $gcd(m, n) \neq n$
 - $p \mid m \& q \nmid m$.

$$\because p \mid m, \ \therefore m \equiv 0 \ mod \ p \Rightarrow m^{ed} \equiv 0 \equiv m \ mod \ p \Rightarrow p \mid (m^{ed} - m).$$

$$\because q \nmid m \Rightarrow \gcd(m,q) = 1 \Rightarrow m^{q-1} \equiv 1 \bmod q.$$

$$\therefore m^{1+k(p-1)(q-1)} \equiv m \bmod q \Rightarrow q \mid (m^{ed} - m).$$

$$\because gcd(p,q) = 1 \Rightarrow pq \mid (m^{ed} - m) \Rightarrow c^d \equiv m \bmod n.$$

• $p \nmid m \& q \mid m$. The proof for this case is same as the above by interchanging the role of p & q.

Primality Testing – Probabilistic Algorithm

```
Input: n
Output: YES if n is composite, NO otherwise.
Choose a random b, 0 < b < n
if gcd(b, n) > 1 then
   return YES
end
else
if b^{n-1} \not\equiv 1 \mod n then
   return YES
end
else:
return NO
```


Primality Testing – Probabilistic Algorithm

```
Input: an odd integer n \ge 3 and security parameter t \ge 1.
Output: an answer "prime" or "composite" to the question: "Is n prime?"
Write n-1=2^s, r s/t r is odd.
for i = 1 to t do
     Choose a random integer a s/t 2 \le a \le n - 2.
     Compute y \equiv a^r \mod n
     if y \neq 1 \& y \neq n-1 then
          i \leftarrow 1.
          while j \le s - 1 \& y \ne n - 1 do
                Compute y \leftarrow y^2 \mod n.
                If y = 1 then return("composite").
                i \leftarrow i + 1.
          end
          If y \neq n-1 then return ("composite").
     end
end
Return("prime").
```

Deterministic Polynomial Time Algorithm

Input: a positive integer n > 1

Output: *n* is **Prime** or **Composite** in deterministic polynomial-time If $n = a^b$ with $a \in \mathbb{N}$ & b > 1, then output **COMPOSITE**.

Deterministic Polynomial Time Algorithm

Input: a positive integer n > 1

Output: *n* is **Prime** or **Composite** in deterministic polynomial-time

If $n = a^b$ with $a \in \mathbb{N}$ & b > 1, then output **COMPOSITE**.

Find the smallest r such that $ord_r(n) > 4(\log n)^2$.

If $1 < \gcd(a, n) < n$ for some $a \le r$, then output **COMPOSITE**.

Deterministic Polynomial Time Algorithm

Input: a positive integer n > 1

Output: *n* is **Prime** or **Composite** in deterministic polynomial-time

If $n = a^b$ with $a \in \mathbb{N}$ & b > 1, then output **COMPOSITE**.

Find the smallest r such that $ord_r(n) > 4(\log n)^2$.

If $1 < \gcd(a, n) < n$ for some $a \le r$, then output **COMPOSITE**.

If $n \leq r$, then output **PRIME**.

Deterministic Polynomial Time Algorithm

The AKS Algorithm

Input: a positive integer n > 1

Output: *n* is **Prime** or **Composite** in deterministic polynomial-time

If $n = a^b$ with $a \in \mathbb{N}$ & b > 1, then output **COMPOSITE**.

Find the smallest *r* such that $ord_r(n) > 4(\log n)^2$.

If $1 < \gcd(a, n) < n$ for some $a \le r$, then output **COMPOSITE**.

If $n \le r$, then output **PRIME**.

for a = 1 to $\lfloor 2\sqrt{\phi(r)} \log n \rfloor$ do

if
$$(x-a)^n \not\equiv (x^n-a) \mod (x^r-1,n)$$
,

then output **COMPOSITE**.

end

Return("PRIME").

RSA Example

RSA using the private	and public key or using only	the public key
(p-1)(q-1) is the Eu	numbers p and q. The compo uler totient. The public key e is ulated such that d = e^(-1) (mo	site number N = pq is the public RSA modulus, and phi(N) = freely chosen but must be coprime to the totient. The privat d phi(N)).
C For data encryption and the public key		will only need the public RSA parameters: the modulus N
Prime number entry		
Prime number p	19	Generate prime numbers
Prime number q	17	
RSA parameters		
RSA modulus N	323	(public)
phi(N) = (p-1)(q-1)	288	(secret)
Public key e	2^16+1	
Private key d	161	Update parameters
RSA encryption using	e / decryption using d [alphab	et size: 256]
Input as 🕝 text	C numbers	Alphabet and number system options
Input text		
IGNOU		
The Input text will be	separated into segments of Siz	e 1 (the symbol '#' is used as separator).
I#G#N#0#U		
Numbers input in base	e 10 format.	
073 # 071 # 078 # 0		

RSA Example

```
GP/PARI CALCULATOR Version 2.6.1 (alpha)
           i686 running mingw (ix86/GMP-5.0.1 kernel) 32-bit version
                compiled: Sep 20 2013, gcc version 4.6.3 (GCC)
                (readline v6.2 enabled, extended help enabled)
                    Copyright (C) 2000-2013 The PARI Group
PARI/GP is free software, covered by the GNU General Public <u>License, and comes</u>
WITHOUT ANY WARRANTY WHATSOEVER.
Type ? for help, \q to quit.
Type ?12 for how to get moral (and possibly technical) support.
parisize = 4000000. primelimit = 500000
 N = 323
21 = 323
  e = 2^16+1
  = 65537
  73^ezN
  = 158
  71 ^e x N
  = 224
  78^e%N
  = 10
  79^e%N
  = 317
 85^e%N
   = 17
```

RSA Example

Suppose A wants to send the following message to B

RSAISTHEKEYTOPUBLICKEYCRYPTOGRAPHY

- *B* chooses his $n = 737 = 11 \times 67$. Then $\phi(n) = 660$. Suppose he picks e = 7, $\Rightarrow d = 283$.
- : $26^2 < n < 26^3$: the block size of the plaintext = 2.

$$m_1 = 'RS' = 17 \times 26 + 18 = 460$$

$$c_1 = 460^7 \equiv 697 \mod 737 = 1.26^2 + 0.26 + 21 = BAV$$

RSA Example

	RS	1	l	1	l		l	
	460						I .	
c _b	697	387	229	340	165	223	586	5

LI								
294								
189	600	325	262	100	689	354	665	673

RSA Example

Suppose A wants to send the following message to B

power

- *B* chooses his $n = 1943 = 29 \times 67$. Then $\phi(n) = 1848$. Suppose he picks e = 701, $\Rightarrow d = 29$.
- : $26^2 < n < 26^3$: the block size of the plaintext = 2.
- $m_1 = `po' = 15 \times 26 + 14 = 404$, $m_2 = `we' = 22 \times 26 + 4 = 576$, $m_3 = `ra' = 17 \times 26 + 0 = 442$.
- $c_1 = 404^{701} \equiv 1419 \mod 1943 = 2.26^2 + 2.26 + 15 = ccp$.
- $||ly, c_2| = 344 = 13.26 + 6 = ang \& c_3 = 210 = 8.26 + 2 = aic.$
- The cipher text is

ccpangaic

Security of RSA

Security

If we know n and $\phi(n)$, we can find p & q.

Security of RSA

Security

If we know n and $\phi(n)$, we can find p & q.

We have

$$\phi(n) = pq - p - q + 1 = n - (p + q) + 1.$$

Since we know n, we can find p+q from the above equation. Since we know pq=n and p+q, we can find p & q by factoring the quadratic equation

$$x^2 - (p+q)x + pq = 0.$$

Security of RSA

- Security of RSA relies on difficulty of finding d given n & e.
- Breaking RSA is no harder than Factoring.
- It is not secure against chosen ciphertext attacks(CCA).
- RSA is secure against chosen plaintext attack (CPA).

IND-CCA

Security notion for encryption.

- From a ciphertext c, an attacker should not be able to derive any information from the corresponding plaintext m.
- Even if the attacker can obtain the decryption of any ciphertext, c excepted.
- This is called indistinguishability against a chosen ciphertext attack (IND-CCA).

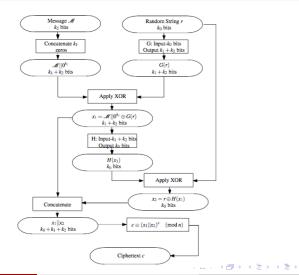
Choice of Encryption Key e

The encryption exponent *e* should not be too small.

Choice of Encryption Key e

- The encryption exponent *e* should not be too small.
- Suppose e = 3 and there are 3 recipients having the same encryption exponent 3, but with different modulus n_i , i = 1, 2, 3.
- Then, ciphertexts $y_i \equiv M^3 \mod n_i$ for i = 1, 2, 3 and send them to the recipients.
- Suppose two of them, say $n_1 \& n_2$, are not coprime. Then, $gcd(n_1, n_2)$ is a non-trivial factor of $n_1 \& n_2$ and any adversary can factorise both of them.
- So, we can always assume that n_i for i = 1, 2, 3 are pairwise coprime.
- If adversary gets hold of the messages y_i , $1 \le i \le 3$, she can compute $M^3 \mod n_1 n_2 n_3$ using Chinese remainder theorem since $\gcd(n_i, n_j) = 1$ for $i \ne j$.
- Since $m < n_i$, $m^3 < n_1 n_2 n_3$. So, $M^3 \mod n_1 n_2 n_3 = M^3$ and the adversary can find M by taking the cube root of $M^3 \mod n_1 n_2 n_3$.

RSA in Practice – Optimal Asymmetric Encryption Padding (OAEP)



Optimal Asymmetric Encryption Padding (OAEP) I

- To encrypt a message M of k₂-bit, first concatenates the message with 0^{k_1} .
- Expands the message to $M||0^{k_1}$.
- After that, select a random string r of length k₀ bits.
- Use it as the random seed for G(r) and computes

$$x_1 = M||0^{k_1} \oplus G(r), \quad x_2 = r \oplus H(x_1)$$

- If $x_1||x_2|$ is a binary number bigger than n, Alice chooses another random string r and computes the new values of $x_1 & x_2$.
- If G(r) produces fairly random outputs, $x_1||x_2|$ will be less than $x_1||x_2|$ binary with a probability greater than $\frac{1}{2}$.

Optimal Asymmetric Encryption Padding (OAEP) II

• After getting a string r with $x_1 || x_2 < n$, Alice then encrypts $x_1 || x_2$ to get the ciphertext

$$E(M) = (x_1 || x_2)^e \equiv c \mod n$$

Key Generation:

- $\bullet <\alpha>=\mathbb{Z}_p^*, \ \mathcal{P}=\mathbb{Z}_p^* \ \& \ C=\mathbb{Z}_p^*\times\mathbb{Z}_p^*.$
- $\beta \equiv \alpha^a \mod p$.
- Public : p, α, β and Private : a.

Encryption:

- Select a random $k \in \mathbb{Z}_{p-1}$.
- $Enc_k(x) = (y_1, y_2)$

$$y_1 \equiv \alpha^k \mod p, \ y_2 \equiv x \beta^k \mod p.$$

Decryption:

$$Dec_k(y_1, y_2) = y_2 \cdot (y_1^a)^{-1}$$
.

Example

- Let p = 29 and $\alpha = 2$, α is a primitive element $\mod 29$.
- Let a = 5, $\beta \equiv 2^5 \mod 3 \mod 29$.

Example

- Let p = 29 and $\alpha = 2$, α is a primitive element $\mod 29$.
- Let a = 5, $\beta \equiv 2^5 \mod 3 \mod 29$.
- Public Key: (29, 2, 3) and Private Key: 5
- Plaintext: x = 6 & random number $k = 14 \in \mathbb{Z}_{28}$

Example

- Let p = 29 and $\alpha = 2$, α is a primitive element $\mod 29$.
- Let a = 5, $\beta \equiv 2^5 \mod 3 \mod 29$.
- Public Key: (29, 2, 3) and Private Key: 5
- Plaintext: x = 6 & random number $k = 14 \in \mathbb{Z}_{28}$
- 0

$$y_1 \equiv 2^{14} \equiv 28 \mod 29 \ \& \ y_2 \equiv 6.3^{14} \equiv 23 \mod 29$$

• Ciphertext: (28, 23).

Elliptic Curves

• Elliptic curve E over field K is defined by

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \ a_i \in \mathbb{K}$$

• The set of \mathbb{K} -rational points $E(\mathbb{K})$ is defined as

$$E(\mathbb{K}) = \{(x, y) \in \mathbb{K} \times \mathbb{K} : y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6\} \cup \{O\}$$

Theorem,

There exists an addition law on E and the set E(K) with that addition forms a group.

58/81

Elliptic Curves I

• Let \mathbb{K} be a field of characteristic $\neq 2, 3$, and let $x^3 + ax + b$ be a cubic polynomial with no multiple roots $(4a^3 + 27b^2 \neq 0)$. An elliptic curve over \mathbb{K} is the set of points (x, y) with $x, y \in K$ which satisfy the equation

$$y^2 = x^3 + ax + b$$

together with a single element denoted *O* and called the *point at infinity*.

② If $char\ K = 2$, then an elliptic curve over \mathbb{K} is the set of points satisfying an equation of type either

$$y^2 + cy = x^3 + ax + b$$

or

$$y^2 + xy = x^3 + ax + b$$

together with the point at infinity O.

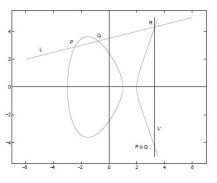
Elliptic Curves II

If char K = 3, then an elliptic curve over \mathbb{K} is the set of points satisfying the equation

$$y^2 = x^3 + ax^2 + bx + c$$

together with the point at infinity O.

Addition Law on Elliptic Curves



2 -6 -4 -2 0 2 4 6

Adding two points

 $y^2 = x^3 - 7x + 6$

Doubling a point

Addition Law on Elliptic Curves

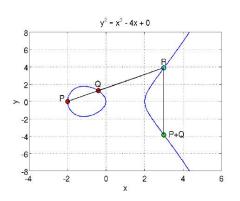
- Suppose *E* is a non-singular elliptic curve.
- The point at infinity O, will be the identity element, so $P + O = O + P = P \ \forall \ P \in E$.
- Suppose $P, Q \in E$, where $P = (x_1, y_1) \& Q = (x_2, y_2)$
 - $x_1 \neq x_2$
 - L is the line through P and Q.
 - L intersects E in the two points P and Q
 - L will intersect E in one further point R'.
 - If we reflect R' in the x-axis, then we get a point R.

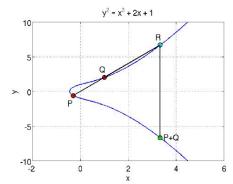
$$P + O = R$$
.

$$(x, y) + (x, -y) = O$$

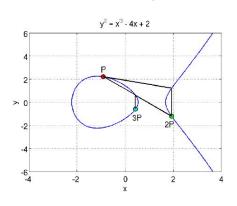
- $x_1 = x_2 \& y_1 = y_2$
 - Draw a tangent line L through P
 - Follow step (i)

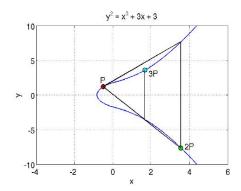
Addition Law on Elliptic Curves



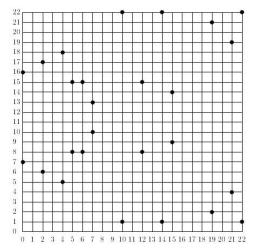


Addition Law on Elliptic Curves





Elliptic Curves over Finite Fields



The elliptic curve $y^2 = x^3 + x + 3 \mod 23$

NIST's Primes for ECC

$$p_{192} = 2^{192} - 2^{64} - 1$$

$$p_{224} = 2^{224} - 2^{96} + 1$$

$$p_{256} = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$$

$$p_{384} = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$$

$$p_{521} = 2^{521} - 1$$

NIST's Primes for ECC

$$p_{192} = 2^{192} - 2^{64} - 1$$

$$p_{224} = 2^{224} - 2^{96} + 1$$

$$p_{256} = 2^{256} - 2^{224} + 2^{192} + 2^{96} - 1$$

$$p_{384} = 2^{384} - 2^{128} - 2^{96} + 2^{32} - 1$$

$$p_{521} = 2^{521} - 1$$

Recommendations for Discrete Logarithm-Based Cryptography: Elliptic Curve Domain Parameters

• First choose two public elliptic curve points P and Q s/t

$$Q = sP$$
,

where s is the private key.

- To encrypt choose a random k
- $Enc_k(m) = (y_1, y_2)$

$$y_1 = kP, \quad y_2 = m + kQ.$$

• Decryption:

$$Dec_k(y_1, y_2) = y_2 - s.y_1$$

- The plaintext space in general may not consist of the points on the curve E, because there is no convenient method known of deterministically generating points on E.
- So, we convert the plaintext as an arbitrary element in \mathbb{Z}_p .
- For that, we can apply a suitable hash function $h: E \to \mathbb{Z}_p$ to kQ
- Add the result *modulo p* to *x* in order to encrypt it.
- To decrypt, the private key s will allow kQ to be computed from kP.
- Then the result is hashed and *modulo p* from the ciphertext.

69/81

Key Generation

- Let E be an elliptic curve defined over \mathbb{Z}_p (where p > 3 is prime) s/t E contains a cyclic subgroup $H = \langle P \rangle$ of prime order n in which the **Discrete Logarithm Problem** is infeasible.
- Let $h: E \to \mathbb{Z}_p$ be a secure hash function.
- Let $\mathcal{P} = \mathbb{Z}_p$ and $C = (\mathbb{Z}_p \times \mathbb{Z}_2) \times \mathbb{Z}_p$. Define

$$\mathcal{K} = \{ (E, P, s, Q, n, h) : Q = sP \},$$

where P and Q are points on E and $s \in \mathbb{Z}_n^*$. The values E, P, Q and P are the public key and P is the private key.

Encryption

• To encrypt a message x sender selects a random number $k \in \mathbb{Z}_n^*$ and compute the ciphertext

$$y = e_K(x, k) = (y_1, y_2) = (POINT - COMPRESS(kP), x + h(kQ) \bmod p),$$

where
$$y_1 \in \mathbb{Z}_p \times \mathbb{Z}_2$$
 and $y_2 \in \mathbb{Z}_p$.

Encryption

• To encrypt a message x sender selects a random number $k \in \mathbb{Z}_n^*$ and compute the ciphertext

$$y = e_K(x, k) = (y_1, y_2) = (POINT - COMPRESS(kP), x + h(kQ) \ mod \ p),$$

where $y_1 \in \mathbb{Z}_p \times \mathbb{Z}_2$ and $y_2 \in \mathbb{Z}_p$.

Decryption

$$d_K(y) = y_2 - h(R) \bmod p,$$

Outline

- Introduction to Public Key Cryptography
- Requirements to Design a PKC
- Origin of PKC
 - Diffie Hellman Key Exchange Protocol
 - Non-secret Encryption
- 4 PKC
 - RSA
 - ElGamal
 - Elliptic Curve
- Digital Signature
 - Digital Signature Algorithm (DSA)

Signature Scheme

Definition

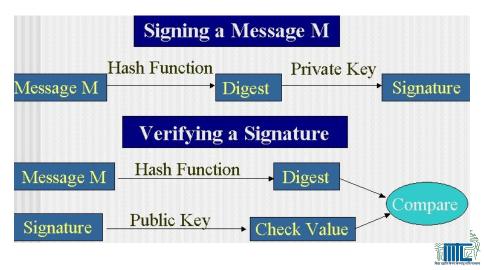
A signature scheme is a five-tuple $(\mathcal{P}, \mathcal{A}, \mathcal{K}, \mathcal{S}, \mathcal{V})$, where the following conditions are satisfied:

- P is a finite set of possible messages
- \bigcirc \mathcal{A} is a finite set of possible signatures
- m \mathcal{K} , the keyspace, is a finite set of possible keys
- **(**w) For each $K \in \mathcal{K}$, there is a signing algorithm $sig_K \in \mathcal{S}$ and a corresponding verification algorithm $ver_K \in \mathcal{V}$. Each $sig_K : \mathcal{P} \to \mathcal{A}$ and $ver_K : \mathcal{P} \times \mathcal{A} \to \{true, \ false\}$ are functions s/t the following equation is satisfied for every message $x \in \mathcal{P}$ and for every signature $y \in \mathcal{A}$

$$ver_K = \begin{cases} true & if \quad y = sig_K(x) \\ false & if \quad y \neq sig_K(x) \end{cases}$$

A pair (x, y) with $x \in \mathcal{P}$ and $y \in \mathcal{A}$ is called a signed message.

Digital Signature



RSA Signature Scheme

Signature Generation

A signs a message m. Any entity B can verify A's signature and recover the message m from the signature.

- Compute $\tilde{m} = R(m)$, where $R : \mathcal{M} \to \mathbb{Z}_n$.
- Compute $s \equiv \tilde{m}^d \mod n$.
- A's signature for m is s.

RSA Signature Scheme

Signature Generation

A signs a message m. Any entity B can verify A's signature and recover the message m from the signature.

- Compute $\tilde{m} = R(m)$, where $R : \mathcal{M} \to \mathbb{Z}_n$.
- Compute $s \equiv \tilde{m}^d \mod n$.
- A's signature for m is s.

Signature Verification

To verify A's signature s and recover the message m, B should:

- Obtain A's authentic public key (n, e).
 - Compute $\tilde{m} \equiv s^e \mod n$.
 - Verify that $\tilde{m} \in \text{range of } \mathcal{M}$; if not, reject the signature.
 - Recover $m = R^{-1}(\tilde{m})$.

DSA

Key Generation

- O Choose a hash function h.
- ② Decide a key length L.
- Ohoose prime q with with same number of bits as output of h.
- **1** Choose α -bit prime p such that q|(p-1).
- **5** Choose *g* such that $g^q \equiv 1 \mod p$.

```
Choose x : 0 < x < q.

Calculate : y \equiv g^x \mod p.

(p, q, g, y) \longrightarrow Public Key

x \longrightarrow Private Key
```


DSA

Signature Generation

- Generate random k such that 0 < k < q.
- 2 Calculate $r \equiv g^k \mod p \mod q$.
- 3 Calculate $s \equiv (k^{-1}(h(m) + xr)) \mod q$.
- \bigcirc Signature is (r, s).

DSA

Signature Generation

- Generate random k such that 0 < k < q.
- 2 Calculate $r \equiv g^k \mod p \mod q$.
- 3 Calculate $s \equiv (k^{-1}(h(m) + xr)) \mod q$.
- \bigcirc Signature is (r, s).

Signature Verification

- Verify v = r.

Schnorr Signature Scheme

Key Generation

• Let p be a prime s/t the DLP in \mathbb{Z}_p^* is intractable, and let q be a prime and $q \mid (p-1)$. Let $\alpha \in \mathbb{Z}_p^*$ be a q^{th} root of unity modulo p. Let $\mathcal{P} = \{0,1\}^*$, $\mathcal{A} = \mathbb{Z}_q \times \mathbb{Z}_q$, and define

$$\mathcal{K} = \{(p, q, \alpha, a, \beta) : \beta \equiv \alpha^a \mod p\},\$$

where $0 \le a \le q - 1$.

The values p, q, α , and β are the public key, and a is the private key.

Public Key Cryptography

Finally, let $h: \{0,1\}^* \to \mathbb{Z}_q$ be a secure hash function.

Schnorr Signature Scheme

Signature Generation

• Signer first selects a (secret) random number k, $1 \le k \le q - 1$, define

$$sig_K(x,k) = (\gamma, \delta),$$

where

$$\gamma = h(x||\alpha^k \mod p) \& \delta = k + a\gamma \mod q.$$

Verification

• For $x \in \{0,1\}^*$ and $\gamma, \delta \in \mathbb{Z}_q$, verification is done by performing the following computations:

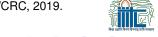
$$ver_K(x,(\gamma,\delta)) = true \leftrightarrow h(x||\alpha^{\delta}\beta^{-\gamma} \mod p) = \gamma.$$

- W Diffie & M Hellman,
 - New Directions in Cryptography, IEEE Transactions on Information Theory, 22(6), 1976.
- J. Hoffstein, J. Pipher & J. H. Silverman, An Introduction to Mathematical Cryptography, Second Edition, Springer, 2014.
- J. Katz & Y. Lindell, Introduction to Modern Cryptography, 2015. CRC Press, 2015.
- Neal Koblitz, A Course in Number Theory and Cryptography, Springer- Verlag, 1994.
- A. Menezes, P. Oorschot & S. Vanstone,

 Handbook of Applied Cryptography, CRC Press, 1997, Available Online at

 http://www.cacr.math.uwateroo.ca/hac/
- D. R. Stinson & M. B. Paterson,

 Cryptography Theory and Practice, Chapman & Hall/CRC, 2019.



The End

Thanks a lot for your attention and QUESTIONS Please!

