# **Classical Ciphers**

### Dhananjoy Dey

#### Indian Institute of Information Technology, Lucknow ddey@iiitl.ac.in

### January 19, 2021



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 



All the pictures used in this presentation are taken from freely available websites.



**Classical Ciphers** 



All the pictures used in this presentation are taken from freely available websites.

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.





All the pictures used in this presentation are taken from freely available websites.

If there is a reference on a slide all of the information on that slide is attributable to that source whether quotation marks are used or not.

Any mention of commercial products or reference to commercial organizations is for information only; it does not imply recommendation or endorsement nor does it imply that the products mentioned are necessarily the best available for the purpose.



ヨトィヨト





**Classical Ciphers** 

Substitution Ciphers



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

∃⇒

### Outline



### **Classical Ciphers**

Substitution Ciphers



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

### Keyword Columnar Transposition

- The columnar transposition cipher can be strengthened by using a keyword
- Plaintext: CRYPTOISFUN, Keyword: MATH



# Keyword Columnar Transposition

- The columnar transposition cipher can be strengthened by using a keyword
- Plaintext: CRYPTOISFUN, Keyword: MATH







### Keyword Columnar Transposition

- The columnar transposition cipher can be strengthened by using a keyword
- Plaintext: CRYPTOISFUN, Keyword: MATH



#### Ciphertext: ROUPSXCTFYIN

- Used by Caesar to communicate with his generals.
- Each letter is shifted by a constant (= 3) position in the alphabet.



E.g., LUCKNOW  $\rightarrow$ 



Dhananjoy Dey (Indian Institute of Informa

- ₹ ⊒ →

- Used by Caesar to communicate with his generals.
- Each letter is shifted by a constant (= 3) position in the alphabet.



 $\text{E.g., LUCKNOW} \rightarrow \text{OXFNQRZ}$ 



Dhananjoy Dey (Indian Institute of Informa

- ₹ ⊒ →

- Used by Caesar to communicate with his generals.
- Each letter is shifted by a constant (= 3) position in the alphabet.



- E.g., LUCKNOW  $\rightarrow$  OXFNQRZ
- Shift cipher
- # of possibilities



→ < ∃→

- Used by Caesar to communicate with his generals.
- Each letter is shifted by a constant (= 3) position in the alphabet.



- E.g., LUCKNOW  $\rightarrow$  OXFNQRZ
- Shift cipher
- # of possibilities = 26.
- On average, a plaintext will be computed after trying 13 decryption



프 ( ) ( ) ( )

### Shift Cipher

Shift = 13



 $\mathsf{TECHNOLOGY} \to$ 



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

э

E ► < E ►</p>

< < >> < <</>

### Shift Cipher

Shift = 13



#### TECHNOLOGY → GRPUABYBTL



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

E ► < E ►</p>

< < >> < <</>

### Shift Cipher

Shift = 13



#### TECHNOLOGY → GRPUABYBTL

Exercise

*Ciphertext : TYECZOFNETZY EZ NCJAEZRCLASJ. Find the shift and the plaintext.* 

Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

### Affine Cipher

• An affine cipher is a simple substitution where

 $c_i \equiv (ap_i + b) \bmod 26.$ 



Dhananjoy Dey (Indian Institute of Informa

### Affine Cipher

• An affine cipher is a simple substitution where

 $c_i \equiv (ap_i + b) \bmod 26.$ 

• What is the key-space of this cipher?



Dhananjoy Dey (Indian Institute of Informa

### Affine Cipher

• An affine cipher is a simple substitution where

 $c_i \equiv (ap_i + b) \bmod 26.$ 

• What is the key-space of this cipher?

 $26\phi(26)$ 



Dhananjoy Dey (Indian Institute of Informa

#### Exercise

- Evaluate the following:
  - 7503 mod 81
  - —7503 mod 81



Dhananjoy Dey (Indian Institute of Informa

э

#### Exercise

- Evaluate the following:
  - 7503 mod 81
  - 7503 mod 81
- If an encryption function e<sub>K</sub> is identical to the decryption function d<sub>K</sub>, then the key K is said to be an involutory key. Find all the involutory keys in the Shift Cipher over Z<sub>26</sub>.



#### Exercise

- Evaluate the following:
  - 7503 mod 81
    - —7503 mod 81
- If an encryption function e<sub>K</sub> is identical to the decryption function d<sub>K</sub>, then the key K is said to be an involutory key. Find all the involutory keys in the Shift Cipher over Z<sub>26</sub>.
- **3** Determine the **number of keys** in an Affine Cipher over  $\mathbb{Z}_{100}$ .



#### Exercise

- Evaluate the following:
  - 7503 mod 81
    - —7503 mod 81
- If an encryption function e<sub>K</sub> is identical to the decryption function d<sub>K</sub>, then the key K is said to be an involutory key. Find all the involutory keys in the Shift Cipher over Z<sub>26</sub>.
- Solution  $\mathbb{O}$  Determine the **number of keys** in an Affine Cipher over  $\mathbb{Z}_{100}$ .
- List all the **invertible elements** in  $\mathbb{Z}_{35}$ .

• Each letter is replaced with another letter, according to a fixed substitution



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 10/31

• Each letter is replaced with another letter, according to a fixed substitution

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: C G H U Z J T E L Y X I F O P K J W V A B D M S N Q

HELLO WORLD  $\rightarrow$ 



Dhananjoy Dey (Indian Institute of Informa

Each letter is replaced with another letter, according to a fixed substitution

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: C G H U Z J T E L Y X I F O P K J W V A B D M S N Q

HELLO WORLD  $\rightarrow$  EZIIP MPWIU Number of possible keys (Key space):



Each letter is replaced with another letter, according to a fixed substitution

Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Ciphertext: C G H U Z J T E L Y X I F O P K J W V A B D M S N Q

HELLO WORLD  $\rightarrow$  EZIIP MPWIU Number of possible keys (Key space): 26!



Dhananjoy Dey (Indian Institute of Informa

# Mono-alphabetic Cipher

#### **Frequency Analysis**





Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

### **Frequency Analysis**

| E | 12.7% | D | 4.2% | Р            | 1.9% |
|---|-------|---|------|--------------|------|
| Т | 9.0%  | L | 4.0% | В            | 1.5% |
| A | 8.2%  | U | 2.8% | $\mathbf{V}$ | 1.0% |
| 0 | 7.5%  | С | 2.8% | Κ            | 0.8% |
| Ι | 7.0%  | Μ | 2.4% | Q            | 0.1% |
| Ν | 6.7%  | W | 2.4% | Х            | 0.1% |
| S | 6.3%  | F | 2.2% | J            | 0.1% |
| Η | 6.1%  | G | 2.0% | Ζ            | 0.1% |
| R | 6.0%  | Y | 2.0% |              |      |



э

Dhananjoy Dey (Indian Institute of Informa

# Mono-alphabetic Cipher

#### **Frequency Analysis**

| digram | frequency | digram | frequency | digram | frequency | digram | frequency |
|--------|-----------|--------|-----------|--------|-----------|--------|-----------|
| th     | 3.15      | to     | 1.11      | sa     | 0.75      | ma     | 0.56      |
| he     | 2.51      | nt     | 1.10      | hi     | 0.72      | ta     | 0.56      |
| an     | 1.72      | ed     | 1.07      | le     | 0.72      | ce     | 0.55      |
| in     | 1.69      | is     | 1.06      | SO     | 0.71      | ic     | 0.55      |
| er     | 1.54      | ar     | 1.01      | as     | 0.67      | 11     | 0.55      |
| re     | 1.48      | ou     | 0.96      | no     | 0.65      | na     | 0.54      |
| es     | 1.45      | te     | 0.94      | ne     | 0.64      | ro     | 0.54      |
| on     | 1.45      | of     | 0.94      | ec     | 0.64      | ot     | 0.53      |
| ea     | 1.31      | it     | 0.88      | io     | 0.63      | tt     | 0.53      |
| ti     | 1.28      | ha     | 0.84      | rt     | 0.63      | ve     | 0.53      |
| at     | 1.24      | se     | 0.84      | co     | 0.59      | ns     | 0.51      |
| st     | 1.21      | et     | 0.80      | be     | 0.58      | ur     | 0.49      |
| en     | 1.20      | al     | 0.77      | di     | 0.57      | me     | 0.48      |
| nd     | 1.18      | ri     | 0.77      | li     | 0.57      | wh     | 0.48      |
| or     | 1.13      | ng     | 0.75      | ra     | 0.57      | ly     | 0.47      |



Dhananjoy Dey (Indian Institute of Informa

э

< < >> < <</>

# Mono-alphabetic Cipher

#### **Frequency Analysis**

| digram | frequency | digram | frequency | digram | frequency | digram | frequency |
|--------|-----------|--------|-----------|--------|-----------|--------|-----------|
| th     | 3.15      | to     | 1.11      | sa     | 0.75      | ma     | 0.56      |
| he     | 2.51      | nt     | 1.10      | hi     | 0.72      | ta     | 0.56      |
| an     | 1.72      | ed     | 1.07      | le     | 0.72      | ce     | 0.55      |
| in     | 1.69      | is     | 1.06      | SO     | 0.71      | ic     | 0.55      |
| er     | 1.54      | ar     | 1.01      | as     | 0.67      | 11     | 0.55      |
| re     | 1.48      | ou     | 0.96      | no     | 0.65      | na     | 0.54      |
| es     | 1.45      | te     | 0.94      | ne     | 0.64      | ro     | 0.54      |
| on     | 1.45      | of     | 0.94      | ec     | 0.64      | ot     | 0.53      |
| ea     | 1.31      | it     | 0.88      | io     | 0.63      | tt     | 0.53      |
| ti     | 1.28      | ha     | 0.84      | rt     | 0.63      | ve     | 0.53      |
| at     | 1.24      | se     | 0.84      | co     | 0.59      | ns     | 0.51      |
| st     | 1.21      | et     | 0.80      | be     | 0.58      | ur     | 0.49      |
| en     | 1.20      | al     | 0.77      | di     | 0.57      | me     | 0.48      |
| nd     | 1.18      | ri     | 0.77      | li     | 0.57      | wh     | 0.48      |
| or     | 1.13      | ng     | 0.75      | ra     | 0.57      | ly     | 0.47      |

#### Trigram: the, and, ent, ion, tio, for, nde, ...

Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 



13/31

# Extension of Mono-alphabetic Cipher

There are three ways to obfuscate the letter frequency:

• homophone cipher

Example

Beale cipher – The oldest known usage in 1401



Dhananjoy Dey (Indian Institute of Informa

# Extension of Mono-alphabetic Cipher

There are three ways to obfuscate the letter frequency:

• homophone cipher

Example

Beale cipher – The oldest known usage in 1401

### o polyalphabetic cipher

Example Vigenére Ciphe, Enigma – The oldest known usage in 1568



Dhananjoy Dey (Indian Institute of Informa

### Extension of Mono-alphabetic Cipher

There are three ways to obfuscate the letter frequency:

homophone cipher

Example

Beale cipher – The oldest known usage in 1401

#### opolyalphabetic cipher

Example

Vigenére Ciphe, Enigma – The oldest known usage in 1568

### olygraphic cipher

Example

Playfair – The oldest known usage in 1854

э

The Homophonic Substitution Cipher involves replacing each letter with a variety of substitutes, the number of potential substitutes being proportional to the frequency of the letter.



Dhananjoy Dey (Indian Institute of Informa

The Homophonic Substitution Cipher involves replacing each letter with a variety of substitutes, the number of potential substitutes being proportional to the frequency of the letter.





Dhananjoy Dey (Indian Institute of Informa

Exercise

Encrypt the plaintext: Information Systems Security



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 16/31

Exercise

Encrypt the plaintext: Information Systems Security

### **Homophonic Cipher**

Plaintext Information System Security

Ciphertext 73 91 31 05 35 27 92 69 83 05 91 86 21 19 85 64 22 96 98 41 08 80 93 20 52



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 16/31

# Polygraphic Cipher

• A polygraphic cipher is using substitution of a group of characters in the plaintext alphabet, known as "*poligraph*".

#### **Playfair Cipher**

- First choose an encryption key, say, POINTS.
- Enter the letters of the key in the cells of a  $5 \times 5$  matrix in a left to right fashion starting with the first cell at the top-left corner.
- Fill the rest of the cells of the matrix with the remaining letters in alphabetic order.
- The letters I and J are assigned the same cell.



< ロ > < 同 > < 回 > < 回 > < 回 > <

# Polygraphic Cipher

#### **Playfair Cipher**

| Ρ | 0 | I/J | Ν | Т |
|---|---|-----|---|---|
| S | Α | В   | С | D |
| Е | F | G   | Н | Κ |
| L | М | Q   | R | U |
| V | W | Х   | Y | Ζ |



Dhananjoy Dey (Indian Institute of Informa

< 2> < 2>

# Polygraphic Cipher

### **Playfair Cipher**

| Ρ | 0 | I/J | Ν | Т |
|---|---|-----|---|---|
| S | Α | В   | С | D |
| E | F | G   | Н | Κ |
| L | М | Q   | R | U |
| V | W | Х   | Y | Ζ |

 $\mathsf{UNIVERSITY} \rightarrow$ 



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 18/31

# Polygraphic Cipher

### **Playfair Cipher**

| Ρ | 0 | I/J | Ν | Т |
|---|---|-----|---|---|
| S | Α | В   | С | D |
| Е | F | G   | Н | Κ |
| L | М | Q   | R | U |
| V | W | Х   | Y | Ζ |

#### UNIVERSITY → RTPXHLBPNZ



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 18/31

< < >> < <</>

# Polygraphic Cipher

### **Playfair Cipher**

| Ρ | 0 | I/J | Ν | Т |
|---|---|-----|---|---|
| S | Α | В   | С | D |
| Е | F | G   | Н | Κ |
| L | М | Q   | R | U |
| V | W | Х   | Y | Ζ |

#### UNIVERSITY → RTPXHLBPNZ





Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 18/31

э

# Polygraphic Cipher

### **Playfair Cipher**

| Ρ | 0 | I/J | Ν | Т |
|---|---|-----|---|---|
| S | Α | В   | С | D |
| Е | F | G   | Н | Κ |
| L | М | Q   | R | U |
| V | W | Х   | Y | Ζ |

#### UNIVERSITY → RTPXHLBPNZ

 $SAG \rightarrow SAGZ \rightarrow$ 



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 18/31

э

# Polygraphic Cipher

### **Playfair Cipher**

| Ρ | 0 | I/J | Ν | Т |
|---|---|-----|---|---|
| S | Α | В   | С | D |
| E | F | G   | Н | K |
| L | М | Q   | R | U |
| V | W | Х   | Y | Ζ |

#### UNIVERSITY → RTPXHLBPNZ

 $\mathsf{SAG} \to \mathsf{SAGZ} \to \mathsf{ABKX}$ 



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 18/31

э

Image: A matrix

### Poly-alphabetic Cipher

#### Vigenére Cipher

- A key of the form  $K = (k_o, k_1, \dots, k_{n-1})$ , where each  $k_i \in \{0, 1, \dots, 25\}$ , is used to encipher the plaintext.
- Each  $k_i$  represents a particular shift of the alphabet.
- To encrypt a message

 $C_i \equiv (P_i + k_{i \bmod n}) \bmod 26$ 

To decrypt

 $P_i \equiv (C_i - k_{i \mod n}) \mod 26$ 

then earth them theme with more

19/31

#### Exercise

Find the key space of Vigenére Cipher when the length of keyword n

Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

Image: A math

January 19, 2021

### Poly-alphabetic Cipher

AB J K Z C D G 0 s A A B Е C D 0 S Ζ в C 7 A 0 C C D В S D C D C Е F D F E G G E F н G L G H J K L MM N M 0 0 P P C Q Q P R R S Q S S R Q Т R S U U S Т VV U WW S XX S V W YY Ζ В WX ZZA В C NO Q R U V WXY D F G M P S



Dhananjoy Dey (Indian Institute of Informa

< 17 ▶

### Poly-alphabetic Cipher

### **Vigenére Cipher**

- Plaintext: HPUNIVERSITY
- Keyword: UIT
- Ciphertext:



Dhananjoy Dey (Indian Institute of Informa

### Poly-alphabetic Cipher

### **Vigenére Cipher**

- Plaintext: HPUNIVERSITY
- Keyword: UIT
- Ciphertext:

### BXNHQOYZLCBR



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 21/31

### Analysis

- A poly-alphabetic substitution cipher uses multiple simple substitutions to encrypt a message
- A polyalphabetic substitution does not preserve plaintext letter frequencies to the same degree as a mono-alphabetic substitution.
- However, if the length keyword is known and the message is long enough, we can transform this into class of simple substitution.



< ロ > < 同 > < 回 > < 回 >

### Analysis

#### How to determine the length of an unknown keyword

#### Kasiski Test

- It relies on the occasional coincidental alignment of letter groups in plaintext with the keyword.
- It was described by Friedrich Kasiski in 1863; however, it was apparently discovered earlier, around 1854, by Charles Babbage.
- We find repeated letter groups in the ciphertext arid tabulate the separations between them.
- The gcd of these separations gives a possible length for the keyword.



### Analysis

#### How to determine the length of an unknown keyword

#### Index of Coincidence

- The index of coincidence *I* is defined to be the probability that two randomly selected letters in the ciphertext represent the same plaintext symbol.
- This concept was defined by William Friedman in 1920.
- The index of coincidence of English text  $\approx 0.065$ .
- *I* for a random text  $\approx 0.03846$ .
- For any English ciphertext the index of coincidence *I* must satisfy 0.03846 ≤ *I* ≤ 0.065.



## Poly-alphabetic Cipher

Hill Cipher<sup>1</sup>

Encryption key,

$$K = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix}$$



<sup>1</sup>Hill cipher was developed by Lester S. Hill, an American mathematician.

**Classical Ciphers** 

# Poly-alphabetic Cipher

Hill Cipher<sup>1</sup>

Encryption key,

$$K = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix}$$

• The plaintext letters  $p_1, p_2 \& p_3$  encrypted into ciphertext letters  $c_1, c_2 \& c_3$  by

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} k_{11} & k_{12} & k_{13} \\ k_{21} & k_{22} & k_{23} \\ k_{31} & k_{32} & k_{33} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

<sup>1</sup>Hill cipher was developed by Lester S. Hill, an American mathematician. = > < = >

**Classical Ciphers** 



#### Exercise

- Let *p* be prime. Find the number of  $3 \times 3$  invertible matrices over  $\mathbb{Z}_p$ .
- 2 Find the number of  $n \times n$  invertible matrices over  $\mathbb{Z}_p$ .
- 3 Find the number of  $n \times n$  invertible matrices over  $\mathbb{Z}_{p^{\alpha}}$
- Find the number of  $n \times n$  invertible matrices over  $\mathbb{Z}_m$



< E

# Cryptography During The French and American Wars in Vietnam

#### CRYPTOGRAPHY DURING THE FRENCH AND AMERICAN WARS IN VIETNAM

#### PHAN DƯƠNG HIỆU AND NEAL KOBLITZ

ABSTRACT. After Vietnam's Declaration of Independence on 2 September 1945, the country had to suffer through two long, brutal wars, first against the French and then against the Americans, before finally in 1975 becoming a unified country free of colonial domination. Our purpose is to examine the role of cryptography in those two wars. Despite the far greater technological resources of their opponents, the communications intelligence specialists of the Việt Minh, the National Liberation Front, and the Democratic Republic of Vietnam had considerable success in both protecting Vietnamese communications and acquiring tactical and strategic secrets from the enemy. Perhaps surprisingly, in both wars there was a balance between the sides. Generally speaking, cryptographic knowledge and protocol design were at a high level at the central commands, but deployment for tactical communications in the field was difficult, and there were many failures on all sides.



#### http://eprint.iacr.org/2016/1136.pdf

Dhananjoy Dey (Indian Institute of Informa

Classical Ciphers

### **Classical Ciphers**

- These ciphers are too weak nowadays, too easy to break, especially with computers.
- However, these simple ciphers give a good illustration of several of the important ideas of the cryptography and cryptanalysis.
- Moreover, most of them can be very useful in combination with more modern cipher – to add a new level of security.



( ) < ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) < )
( ) <

### **Block Cipher**



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 29/31

< ∃⇒

< ∃ >

### **Block Cipher**

- Avoid transport & storage of huge table
- Introduce computation rule to compute table elements:

 $T[X] = f_{key}(X)$ 

• Design "good" rule *f*:



### **Block Cipher**

- Avoid transport & storage of huge table
- Introduce computation rule to compute table elements:

 $T[X] = f_{key}(X)$ 

- Design "good" rule f:
  - Secure
  - Efficient



### Permutation on Block of Characters

#### Example

| AAAA | AAAB | AAAC |      | ZZZZ |
|------|------|------|------|------|
| QAQZ | WIJT | ENTO | •••• | MIHB |



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 30/31

ъ

< A

### Permutation on Block of Characters

#### Example

| AAAA | AAAB | AAAC |     | ZZZZ |
|------|------|------|-----|------|
| QAQZ | WIJT | ENTO | ••• | MIHB |

• 'code book'



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 30/31

ъ

< A

### Permutation on Block of Characters

#### Example

| AAAA | AAAB | AAAC |     | ZZZZ |
|------|------|------|-----|------|
| QAQZ | WIJT | ENTO | ••• | MIHB |

- 'code book'
- If blocks are large enough, then frequency analysis becomes impossible (infeasible).



Dhananjoy Dey (Indian Institute of Informa

ъ



### Thanks a lot for your attention!



Dhananjoy Dey (Indian Institute of Informa

**Classical Ciphers** 

January 19, 2021 31/31

< A